ACKNOWLEDGEMENTS
This work has been partially supported by the Ital-
ian project Realization of services of the national in-
frastructure for interoperability for Electronic Health
Records, a Convention between the Agency for Digi-
tal Italy and the Italian National Research Council.
REFERENCES
Alicante, A., Corazza, A., Isgr
`
o, F., and Silvestri, S.
(2016a). Semantic cluster labeling for medical rela-
tions. Innovation in Medicine and Healthcare 2016,
60:183–193.
Alicante, A., Corazza, A., Isgr
`
o, F., and Silvestri, S.
(2016b). Unsupervised entity and relation extraction
from clinical records in Italian. Computers in Biology
and Medicine, 72:263–275.
Amato, F., Gargiulo, F., Mazzeo, A., Romano, S., and San-
sone, C. (2013). Combining syntactic and semantic
vector space models in the health domain by using a
clustering ensemble. In HEALTHINF 2013 - Proceed-
ings of the International Conference on Health Infor-
matics, pages 382–385.
Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R.,
K
¨
otter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K.,
and Wiswedel, B. (2007). KNIME: The Konstanz In-
formation Miner. In Studies in Classification, Data
Analysis, and Knowledge Organization (GfKL 2007).
Springer.
Bosc
´
a, D., Maldonado, J. A., Moner, D., and Robles, M.
(2015). Automatic generation of computable imple-
mentation guides from clinical information models.
Journal of Biomedical Informatics, 55:143–152.
Boufahja, A., Poiseau, E., Thomazon, G., and Berg
´
e, A.-G.
(2015). Model-based analysis of hl7 cda r2 confor-
mance and requirements coverage. EJBI, 11(2).
Cao, L., Chua, K. S., Chong, W., Lee, H., and Gu, Q.
(2003). A comparison of pca, kpca and ica for dimen-
sionality reduction in support vector machine. Neuro-
computing, 55(1):321–336.
Cavnar, W. B. and Trenkle, J. M. (1994). N-gram-based text
categorization. Ann Arbor MI, 48113(2):161–175.
Ciampi, M., Esposito, A., Guarasci, R., and Pietro, G. D.
(2016). Towards interoperability of ehr systems: The
case of italy. In Proceedings of the International
Conference on Information and Communication Tech-
nologies for Ageing Well and e-Health - Volume 1:
ICT4AWE,, pages 133–138.
Dhillon, I. S., Guan, Y., and Kogan, J. (2002). Iterative
clustering of high dimensional text data augmented
by local search. In Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on,
pages 131–138. IEEE.
Eder, M. (2011). Style-markers in authorship attribution
a cross-language study of the authorial fingerprint.
Studies in Polish Linguistics, 6(1):99–114.
Gargiulo, F., Fontanella, M., and Ciampi, M. (2016). Vali-
dazione di documenti sanitari strutturati in hl7 cda rel.
2.0 con schemi schematron. Technical report, Istituto
di Calcolo e Reti ad Alte Prestazioni (ICAR) del Con-
siglio Nazionale delle Ricerche (CNR).
Halkidi, M. and Vazirgiannis, M. (2001). Clustering valid-
ity assessment: Finding the optimal partitioning of a
data set. In Data Mining, 2001. ICDM 2001, Proceed-
ings IEEE International Conference on, pages 187–
194. IEEE.
Hamilton, J., Darr, T., Fernandes, R., Jones, D., and Mor-
gan, J. (2015). Rule-based constraints for metadata
validation and verification in a multi-vendor environ-
ment. In International Telemetering Conference Pro-
ceedings. International Foundation for Telemetering.
Handl, J., Knowles, J., and Kell, D. B. (2005). Computa-
tional cluster validation in post-genomic data analysis.
Bioinformatics, 21(15):3201–3212.
Hornik, K., Feinerer, I., Kober, M., and Buchta, C. (2012).
Spherical k-means clustering. Journal of Statistical
Software, 50(10):1–22.
Jafarpour, B., Abidi, S. R., and Abidi, S. S. R. (2016). Ex-
ploiting semantic web technologies to develop owl-
based clinical practice guideline execution engines.
IEEE Journal of Biomedical and Health Informatics,
20(1):388–398.
Jelliffe, R. (2001). The schematron assertion language 1.5.
Academia Sinica Computing Center.
Karypis, G. (2002). Cluto-a clustering toolkit. Technical
report, DTIC Document.
Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups
in data: an introduction to cluster analysis, volume
344. John Wiley & Sons.
Liu, Y., Li, Z., Xiong, H., Gao, X., and Wu, J. (2010). Un-
derstanding of internal clustering validation measures.
In 2010 IEEE International Conference on Data Min-
ing, pages 911–916. IEEE.
Pollard, K. S. and Van Der Laan, M. J. (2002). A method
to identify significant clusters in gene expression data.
In Proceedings of SCI World Multiconference on Sys-
temics, Cybernetics and Informatics, pages 318–325.
Rend
´
on, E., Abundez, I., Arizmendi, A., and Quiroz, E.
(2011). Internal versus external cluster validation in-
dexes. International Journal of computers and com-
munications, 5(1):27–34.
Rosenberg, A. and Hirschberg, J. (2007). V-measure: A
conditional entropy-based external cluster evaluation
measure. In EMNLP-CoNLL, volume 7, pages 410–
420.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Weston, S. and Analytics, R. (2014). doParallel: Foreach
parallel adaptor for the parallel package. R package
version 1.0.8.
Wu, J., Xiong, H., and Chen, J. (2009). Adapting the right
measures for k-means clustering. In Proceedings of
the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 877–
886. ACM.
Zhong, S. (2005). Efficient online spherical K-means clus-
tering. In Proceedings of the IEEE International Joint
Conference on Neural Networks, volume 5, pages
3180–3185.