(ISBI), 2013 IEEE 10th International Symposium on,
pages 1436–1439. IEEE.
Fouquier, G., Atif, J., and Bloch, I. (2012). Sequential
model-based segmentation and recognition of image
structures driven by visual features and spatial rela-
tions. Computer Vision and Image Understanding,
116(1):146 – 165. Virtual Representations and Mod-
eling of Large-scale Environments (VRML).
Frisoni, G. B., Testa, C., Sabattoli, F., Beltramello, A.,
Soininen, H., and Laakso, M. P. (2005). Structural
correlates of early and late onset Alzheimers disease:
voxel based morphometric study. Journal of Neurol-
ogy, Neurosurgery and Psychiatry, 76(1):112–114.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002).
Gene selection for cancer classification using support
vector machines. Machine learning, 46(1-3):389–422.
Harel, J., Koch, C., and Perona, P. (2006). Graph-based vi-
sual saliency. In Advances in neural information pro-
cessing systems, pages 545–552.
Harper, L., Fumagalli, G. G., Barkhof, F., Scheltens, P.,
O’Brien, J. T., Bouwman, F., Burton, E. J., Rohrer,
J. D., Fox, N. C., Ridgway, G. R., and Schott, J. M.
(2016). Mri visual rating scales in the diagnosis of
dementia: evaluation in 184 post-mortem confirmed
cases. Brain.
Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., and
Scholkopf, B. (1998). Support vector machines.
Intelligent Systems and their Applications, IEEE,
13(4):18–28.
Itti, L., Koch, C., Niebur, E., et al. (1998). A model of
saliency-based visual attention for rapid scene analy-
sis. IEEE Transactions on pattern analysis and ma-
chine intelligence, 20(11):1254–1259.
Jampani, V., Sivaswamy, J., Vaidya, V., et al. (2012). As-
sessment of computational visual attention models on
medical images. In Proceedings of the Eighth Indian
Conference on Computer Vision, Graphics and Image
Processing, page 80. ACM.
Lala, D. and Nakazawa, A. (2016). Heat map visualiza-
tion of multi-slice medical images through correspon-
dence matching of video frames. In Proceedings of
the Ninth Biennial ACM Symposium on Eye Tracking
Research & Applications, ETRA ’16, pages 119–122,
New York, NY, USA. ACM.
Li, R., Shi, P., and Haake, A. R. (2013). Image understand-
ing from experts’ eyes by modeling perceptual skill of
diagnostic reasoning processes. In Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Confer-
ence on, pages 2187–2194.
Ma, L., Wang, W., Zou, S., and Zhang, J. (2009). Liver
focus detections based on visual attention model. In
2009 3rd International Conference on Bioinformatics
and Biomedical Engineering, pages 1–5.
Mahapatra, D. and Buhmann, J. M. (2015). Machine Learn-
ing in Medical Imaging: 6th International Workshop,
MLMI 2015, Held in Conjunction with MICCAI 2015,
Munich, Germany, October 5, 2015, Proceedings,
chapter Visual Saliency Based Active Learning for
Prostate MRI Segmentation, pages 9–16. Springer In-
ternational Publishing, Cham.
Mehmood, I., Baik, R., and Baik, S. W. (2013a). Automatic
Segmentation of Region of Interests in MR Images Us-
ing Saliency Information and Active Contours, pages
537–544. Springer Netherlands, Dordrecht.
Mehmood, I., Ejaz, N., Sajjad, M., and Baik, S. W. (2013b).
Prioritization of brain {MRI} volumes using medi-
cal image perception model and tumor region seg-
mentation. Computers in Biology and Medicine,
43(10):1471 – 1483.
Nodine, C. F. and Kundel, H. L. (1987). Using eye move-
ments to study visual search and to improve tumor de-
tection. Radiographics, 7(6):1241–1250.
Pulido, A., Rueda, A., and Romero, E. (2013). Classifi-
cation of alzheimer’s disease using regional saliency
maps from brain mr volumes. In SPIE Medical Imag-
ing, pages 86700R–86700R. International Society for
Optics and Photonics.
Pulidoa, A., Rueda, A., and Romeroa, E. Extracting re-
gional brain patterns for classification of neurodegen-
erative diseases. In Proc. of SPIE Vol, volume 8922,
pages 892208–1.
Rueda, A., Gonzalez, F., Romero, E., et al. (2014). Extract-
ing salient brain patterns for imaging-based classifica-
tion of neurodegenerative diseases. Medical Imaging,
IEEE Transactions on, 33(6):1262–1274.
Shao, H., Zhang, Y., Xian, M., Cheng, H. D., Xu, F., and
Ding, J. (2015). A saliency model for automated tu-
mor detection in breast ultrasound images. In Image
Processing (ICIP), 2015 IEEE International Confer-
ence on, pages 1424–1428.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D.,
Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., and
Joliot, M. (2002). Automated anatomical labeling of
activations in {SPM} using a macroscopic anatomi-
cal parcellation of the {MNI} {MRI} single-subject
brain. NeuroImage, 15(1):273 – 289.
Wen, G., Aizenman, A., Drew, T., Wolfe, J. M., Hay-
good, T. M., and Markey, M. K. (2016). Computa-
tional assessment of visual search strategies in volu-
metric medical images. Journal of Medical Imaging,
3(1):015501–015501.
Yuan, Y., Wang, J., Li, B., and Meng, M. Q. H. (2015).
Saliency based ulcer detection for wireless capsule en-
doscopy diagnosis. IEEE Transactions on Medical
Imaging, 34(10):2046–2057.
Zou, X., Zhao, X., Yang, Y., and Li, N. (2016). Learning-
based visual saliency model for detecting diabetic
macular edema in retinal image. Computational In-
telligence and Neuroscience, 2016.
Saliency Guided Computer-aided Diagnosis for Neurodegenerative Dementia
147