Ellingson, K., Haas, J. P., Aiello, A. E., Kusek, L., Mara-
gakis, L. L., Olmsted, R. N., Perencevich, E., Pol-
green, P. M., Schweizer, M. L., Trexler, P., VanAm-
ringe, M., and Yokoe, D. S. (2014). Strategies to Pre-
vent Healthcare-Associated Infections through Hand
Hygiene. Infection Control and Hospital Epidemiol-
ogy, 35(8):937–960.
Ellison, R. T., Barysauskas, C. M., Rundensteiner, E. A.,
Wang, D., and Barton, B. (2015). A Prospective
Controlled Trial of an Electronic Hand Hygiene Re-
minder System. Open Forum Infectious Diseases,
page ofv121.
Fakhry, M., Hanna, G. B., Anderson, O., Holmes, A., and
Nathwani, D. (2012). Effectiveness of an audible re-
minder on hand hygiene adherence. American Journal
of Infection Control, 40(4):320–323.
Gardner, W. A. (1984). Learning characteristics of
stochastic-gradient-descent algorithms: A general
study, analysis, and critique. Signal Processing,
6(2):113–133.
Glorot, X. and Bengio, Y. (2010). Understanding the dif-
ficulty of training deep feedforward neural networks.
In Aistats, volume 9, pages 249–256.
Goldberg, D. E. (1989). Genetic algorithms in search, opti-
mization and machine learning. Addison-Wesley.
Gould, D. J., Drey, N. S., and Creedon, S. (2011). Rou-
tine hand hygiene audit by direct observation: has
nemesis arrived? The Journal of Hospital Infection,
77(4):290–293.
Graves, A. (2012). Supervised sequence labelling. In Super-
vised Sequence Labelling with Recurrent Neural Net-
works, pages 5–13. Springer.
Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of machine learn-
ing research, 3(Mar):1157–1182.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18.
John, G. H. and Langley, P. (1995). Estimating continuous
distributions in bayesian classifiers. In Eleventh Con-
ference on Uncertainty in Artificial Intelligence, pages
338–345, San Mateo. Morgan Kaufmann.
Kohavi, R. and John, G. H. (1997). Wrappers for feature
subset selection. Artificial Intelligence, 97(1-2):273–
324. Special issue on relevance.
Marra, A. R., Guastelli, L. R., Arajo, C. M. P. d., Santos,
J. L. S. d., Lamblet, L. C. R., Silva, M., Lima, G. d.,
Cal, R. G. R., Paes, n. T., Neto, M. C., Barbosa, L.,
Edmond, M. B., and Santos, O. F. P. d. (2010). Pos-
itive Deviance A New Strategy for Improving Hand
Hygiene Compliance. Infection Control & Hos-
pital Epidemiology, 31(1):12–20.
Marra, A. R., Sampaio Camargo, T. Z., Magnus, T. P.,
Blaya, R. P., Dos Santos, G. B., Guastelli, L. R.,
Rodrigues, R. D., Prado, M., Victor, E. d. S., Bo-
gossian, H., Monte, J. C. M., dos Santos, O. F. P.,
Oyama, C. K., and Edmond, M. B. (2014). The use
of real-time feedback via wireless technology to im-
prove hand hygiene compliance. American Journal of
Infection Control, 42(6):608–611.
Morgan, D. J., Pineles, L., Shardell, M., Young, A., Elling-
son, K., Jernigan, J. A., Day, H. R., Thom, K. A., Har-
ris, A. D., and Perencevich, E. N. (2012). Automated
hand hygiene count devices may better measure com-
pliance than human observation. American Journal of
Infection Control, 40(10):955–959.
Platt, J. et al. (1998). Sequential minimal optimization: A
fast algorithm for training support vector machines.
Sahud, A. G. and Bhanot, N. (2009). Measuring hand hy-
giene compliance: a new frontier for improving hand
hygiene. Infection Control and Hospital Epidemiol-
ogy, 30(11):1132.
Schum, D. A. (1994). The evidential foundations of proba-
bilistic reasoning. Northwestern University Press.
Shrestha, S. K., Sunkesula, V. C., Kundrapu, S., Tomas,
M. E., Nerandzic, M. M., and Donskey, C. J. (2016).
Acquisition of clostridium difficile on hands of health-
care personnel caring for patients with resolved c. dif-
ficile infection. Infection Control & Hospital Epi-
demiology, 37(04):475–477.
Sickbert-Bennett, E. E., DiBiase, L. M., Schade Willis,
T. M., Wolak, E. S., Weber, D. J., and Rutala, W. A.
(2016). Reducing health careassociated infections by
implementing a novel all hands on deck approach for
hand hygiene compliance. American Journal of Infec-
tion Control, 44(5, Supplement):e13–e16.
Team, D. D. (2016). Deeplearning4j: Open-source dis-
tributed deep learning for the jvm. Apache Software
Foundation License, 2.
Ward, M. A., Schweizer, M. L., Polgreen, P. M., Gupta,
K., Reisinger, H. S., and Perencevich, E. N. (2014).
Automated and electronically assisted hand hygiene
monitoring systems: A systematic review. American
Journal of Infection Control, 42(5):472–478.
WHO (2009). A guide to the implementation of the WHO
multimodal hand hygiene improvement strategy.
Zhang, P., White, J., Schmidt, D., and Dennis, T. (2016). A
preliminary study of hand hygiene compliance char-
acteristics with machine learning methods. (ISIS-16-
101).