Integration of Vehicle Detection and Distance Estimation using Stereo Vision for Real-Time AEB System

Byeonghak Lim, Taekang Woo, Hakil Kim

2017

Abstract

We propose an integrated system for vehicle detection and distance estimation for real-time autonomous emergency braking (AEB) systems using stereo vision. The two main modules, object detection and distance estimation, share a disparity extraction algorithm in order to satisfy real-time processing requirements. The object detection module consists of an object candidate region generator and a classifier. The object candidate region generator uses stixels extracted from image disparity. A surface normal vector is computed for validation of the candidate regions, which reduces false alarms in the object detection results. In order to classify the proposed stixel regions into foreground and background regions, we use a convolutional neural network (CNN)-based classifier. The distance to an object is estimated from the relationship between the image disparity and camera parameters. After distance estimation, a height constraint is applied with respect to the distance using geometric information. The detection accuracy and distance error rate of the proposed method are evaluated using the KITTI datasets, and the results demonstrate promising performance.

References

  1. I. Cabani, G. Toulminet and A. Bensrhair. (2005). Colorbased Detection of Vehicle Lights. Proceedings of the IEEE Intelligent Vehicles Symposium.
  2. P. Chang, D. Hirvonen, T. Camus, B. Southall. (2005). Stereo-based Object Detection, Classification, and Quantitative Evaluation with Automotive Applications. Workshops in the IEEE conference on Computer Vision and Pattern Recognition.
  3. U. Franke, C. Rabe, H. Badino, S. Gehrig. (2005). 6DVision: Fusion of Stereo and Motion for Robust Environment Perception. Joint Pattern Recognition Symposium.
  4. A. Elfes. (1989). Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer.
  5. H. Badino, U. Franke, D. Pfeiffer. (2009). The Stixel World-A Compact Medium Level Representation of the 3D-World. Joint Pattern Recognition Symposium.
  6. A. Elfes. (2013). Occupancy Grids: A Stochastic Spatial Representation for Active Robot Perception. arXiv preprint arXiv:1304.1098.
  7. R. Qin, J. Gong, H. Li, X. Huang. (2013). A Coarse Elevation Map-based Registration Method for SuperResolution of Three-Line Scanner Images. Photogrammetric Engineering & Remote Sensing.
  8. B. Barrois, C. Wohler. (2013). 3D Pose Estimation of Vehicles using Stereo Camera. Transportation Technologies for Sustainability.
  9. A. Barth, U. Franke. (2009). Estimating the Driving State of Oncoming Vehicles from a Moving Platform using Stereo Vision. IEEE Transactions on Intelligent Transportation Systems.
  10. A. Broggi, A. Cappalunga, C. Caraffi, S. Cattani, S. Ghidoni, P. Grisleri, P. Porta, M. Posterli, P. Zani. (2010). TerraMax Vision at Urban Challenge. IEEE Transactions on Intelligent Transportation Systems.
  11. R. Danescu, F. Oniga, S. Nedevschi. (2011). Modeling and Tracking the Driving Environment with a Particlebased Grid. IEEE Transactions on Intelligent Transportation Systems.
  12. F. Erbs, A. Barth, U. Franke. (2011). Moving Vehicle Detection by Optimal Segmentation of the Dynamic Stixel World. IEEE Intelligent Vehicles Symposium.
  13. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman. (2012). The Pascal Visual Object Classes (VOC) Challenge. International journal of Computer Vision.
  14. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei. (2015). ImageNet Large Scale Visual Recognition Challenge. International journal of Computer Vision.
  15. S. Ren, K. He, R. Girshick, J. Sun. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv preprint arXiv:1506.01497.
  16. J. Redmon, S. Divvala, R. Girshick, A. Farhadi. (2015). You Only Look Once: Unified, Real-time Object Detection. arXiv preprint arXiv:1506.02640.
  17. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed. (2015). SSD: Single Shot Multibox Detector. arXiv preprint arXiv:1512.02325.
  18. J. R. Uijlings, K. Van de Sande, T. Gevers, A. W. Smeulders. (2013). Selective Search for Object Recognition. International journal of Computer Vision.
  19. J. Matas, O. Chum, M. Urban, T. Pajdla. (2004). Robust Wide-Baseline Stereo from Maximally Stable Extremal Regions. Image and Vision Computing.
  20. M. Ester, H. Kriegel, J. Sander, X. Xu. (1996). A Densitybased Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the AAAI conference on Knowledge Discovery and Data Mining.
  21. K. Simonyan, A. Zisserman. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.
  22. M. Lin, Q. Chen, S. Yan. (2013). Network in Network. arXiv preprint arXiv:1312.4400.
  23. K. He, X. Zhang, S. Ren, J. Sun. (2015). Deep Residual Learning for Image Recognition. arXiv preprint arXiv:1512.03385.
  24. A. Geiger, P. Lenz, R. Urtasun. (2012). Are We Ready for Autonomous Driving? The KITTI vision benchmark suite. IEEE conference on Computer Vision and Pattern Recognition.
  25. X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, R. Urtasun (2015). 3D Object Proposals for Accurate Object Class Detection. Advances in Neural Information Processing Systems.
  26. C. Szegedy, S. Ioffe, V. Vanhoucke (2016). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv preprint arXiv:1602.07261.
Download


Paper Citation


in Harvard Style

Lim B., Woo T. and Kim H. (2017). Integration of Vehicle Detection and Distance Estimation using Stereo Vision for Real-Time AEB System . In Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, ISBN 978-989-758-242-4, pages 211-216. DOI: 10.5220/0006296702110216


in Bibtex Style

@conference{vehits17,
author={Byeonghak Lim and Taekang Woo and Hakil Kim},
title={Integration of Vehicle Detection and Distance Estimation using Stereo Vision for Real-Time AEB System},
booktitle={Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},
year={2017},
pages={211-216},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006296702110216},
isbn={978-989-758-242-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,
TI - Integration of Vehicle Detection and Distance Estimation using Stereo Vision for Real-Time AEB System
SN - 978-989-758-242-4
AU - Lim B.
AU - Woo T.
AU - Kim H.
PY - 2017
SP - 211
EP - 216
DO - 10.5220/0006296702110216