ing features derived from text analysis. The results
depict with high accuracy the suicidal manifestation
in the text of users in danger to commit suicide.
As a future work, we are considering to explore al-
ternative factors which are not introduced in our ap-
proach and potentially influence the prediction of sui-
cidal intention such as the behavior in social net-
works.
REFERENCES
Abboute, A., Boudjeriou, Y., Entringer, G., Az
´
e, J.,
Bringay, S., and Poncelet, P. (2014). Mining Twitter
for Suicide Prevention, pages 250–253. Springer In-
ternational Publishing, Cham.
Burnap, P., Colombo, W., and Scourfield, J. (2015). Ma-
chine classification and analysis of suicide-related
communication on twitter. In Proceedings of the 26th
ACM Conference on Hypertext & Social Media,
HT ’15, pages 75–84, New York, NY, USA. ACM.
Carrillo, J., Rojo, N., Sanchez-Bernardos, M., and Avia, M.
(2001). Openness to experience and depression. Euro-
pean Journal of Psychological Assessment, 17(2):130.
Celli, F. (2012). Unsupervised personality recognition for
social network sites. In Proc. of Sixth International
Conference on Digital Society. Citeseer.
Colombo, G. B., Burnap, P., Hodorog, A., and Scourfield,
J. (2016). Analysing the connectivity and communi-
cation of suicidal users on twitter. Computer Commu-
nications, 73, Part B:291 – 300. Online Social Net-
works.
Graesser, A. C., McNamara, D. S., Louwerse, M. M., and
Cai, Z. (2004). Coh-metrix: Analysis of text on co-
hesion and language. Behavior research methods, in-
struments, & computers, 36(2):193–202.
John, O. P. and Srivastava, S. (1999). The big five trait
taxonomy: History, measurement, and theoretical per-
spectives. Handbook of personality: Theory and re-
search, 2(1999):102–138.
Kotrla Topi
´
c, M., Perkovi
´
c Kova
ˇ
cevi
´
c, M., and Mla
ˇ
ci
´
c,
B. (2012). Relations of the big-five personality di-
mensions to autodestructive behavior in clinical and
non-clinical adolescent populations. Croatian medi-
cal journal, 53(5):450–460.
Lightman, E. J., McCarthy, P. M., Dufty, D. F., and McNa-
mara, D. S. (2007). Using computational text anal-
ysis tools to compare the lyrics of suicidal and non-
suicidal songwriters. In Proceedings of the 29th An-
nual Meeting of the Cognitive Science Society, pages
1217–1222. Citeseer.
Mairesse, F., Walker, M. A., Mehl, M. R., and Moore, R. K.
(2007). Using linguistic cues for the automatic recog-
nition of personality in conversation and text. J. Artif.
Int. Res., 30(1):457–500.
McCrae, R. R. and John, O. P. (1992). An introduction to
the five-factor model and its applications. Journal of
personality, 60(2):175–215.
Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.
Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001).
Linguistic inquiry and word count: Liwc 2001. Mah-
way: Lawrence Erlbaum Associates, 71:2001.
Pestian, J., Nasrallah, H., Matykiewicz, P., Bennett, A., and
Leenaars, A. (2010). Suicide Note Classification Us-
ing Natural Language Processing: A Content Analy-
sis. Biomedical informatics insights, 2010(3):19–28.
Rozanov, V. A. and Mid’ko, A. A. (2011). Person-
ality patterns of suicide attempters: gender differ-
ences in ukraine. The Spanish journal of psychology,
14(02):693–700.
Soltaninejad, A., Fathi-Ashtiani, A., Ahmadi, K., Mir-
sharafoddini, H. S., Nikmorad, A., and Pilevarzadeh,
M. (2014). Personality factors underlying suicidal be-
havior among military youth. Iran Red Crescent Med
J, 16(4):e12686.
Stirman, S. W. and Pennebaker, J. W. (2001). Word Use in
the Poetry of Suicidal and Nonsuicidal Poets. Psycho-
somatic Medicine, 63(4):517–522.
Sueki, H. (2015). The association of suicide-related twitter
use with suicidal behaviour: A cross-sectional study
of young internet users in japan. Journal of Affective
Disorders, 170:155 – 160.
Thompson, P., Bryan, C., and Poulin, C. (2014). Predict-
ing military and veteran suicide risk: Cultural aspects.
In Proceedings of the Workshop on Computational
Linguistics and Clinical Psychology: From Linguis-
tic Signal to Clinical Reality, pages 1–6, Baltimore,
Maryland, USA. Association for Computational Lin-
guistics.
SIAS: Suicidal Intentions Alerting System
297