Big Data & Analytics to Support the Renewable Energy Integration of Smart Grids - Case Study: Power Solar Generation

Guillermo Escobedo, Norma Jacome, G. Arroyo-Figueroa

2017

Abstract

Smart Grid is the modernization of electrical networks using intelligent systems and information technologies. In smart grid environment, the application of big data analytics based decision support and intelligent control are mainly in the following four aspects: power generation side management, micro grid and renewable energy management, asset management and collaborative operations, and demand side management. The objective of this research is to present a technological infrastructure for the management of large volumes of information through Big Data tools to support the integration of renewable energy. The infrastructure includes a methodological architecture for the acquisition, processing, storage, management, analysis, monitoring and forecast of large amounts of data. The development of a Big Data application for the analysis and monitoring of the information generated by photovoltaic systems is included as a case study. Solar generation technologies have experienced strong energy market growth in the past few years, with corresponding increase in local grid penetration. The goal is to have timely information to make better decisions to improve the integration of renewable energy in the Smart Grid.

References

  1. Liu, Y. "Big Data and Predictive Business Analytics". Journal of Business Forecasting , 33 (4), pp: 40-52, 2014.
  2. CRE. "Marco Regulatorio de la Red Eléctrica Inteligente (REI) en México - Para la Comisión Reguladora de Energía". Comisión Reguladora de Energía. 2014..
  3. López, J., Padilha, A., & Gallego, L. "Ubicación óptima de generación distribuida en sistemas de energía eléctrica". Ingeniería y ciencia , 5 (9), pp: 9-23, 2009.
  4. Andersson, K., & Elf, J. "One Step Towards Creating Value From Big Data - A case study on E.ON Elnät". Lund School of Economics and Management, Lund University , Department of Business Administration. Sweden: Lund Institute of Technology, 2015.
  5. De Mauro, A., Greco, M., & Grimaldi, M. "What is big data? A consensual definition and a review of key research topic". AIP Conference Proceedings (1644), 97-104, 2014.
  6. Escobedo, G., Jácome, N., & Arroyo, G. "Business Intelligence and Data Analytics (BI&DA) to Support the operation of Smart Grid". In Proceedings of the International Conference on Internet of Things and Big Data (IoTBD 2016), pages 489-496 , 2016.
  7. George, L. "HBase: The Definitive Guide (First Edition ed.)". USA: O'REILLY, 2011.
  8. González, R., Jiménez, H. R., Huacuz, J. M., & Munguía, G. "First 3-phase Grid- connected Photovoltaic System in Mexico". 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering , 1, 2006.
  9. Hurwitz, J., Nugent, A., Halper, F., Kaufman, M., et al.. Big Data For Dummies. USA: John Wiley & Sons, Inc., 2013.
  10. IBM. "The Four V's of Big Data" http://www.ibmbigdatahub.com/infographic/four-vsbig-data, 2015.
  11. IEA. Technology Roadmap Smart Grids. International Energy Agency: https://www.iea.org/publications/ freepublications/ publication/ smartgrids_roadmap. pdf, 2011.
  12. Mysore, D., Khupat, S., & Jain, S. "Big data architecture and patterns, Part 3: Understanding the architectural layers of a big data solution". IBM developerWorks: http://www.ibm.com/developerworks/library/bdarchpatterns3/index.html, 2013.
  13. SENER. "Estrategia Nacional de Energía 2013-2027". Mexico Secretaría de Energía: http://www.energia. gob.mx/ res/ PE_y_DT/ pub/ 2013/ ENE_2013-2027. pdf, 2013.
  14. Vicini, R., & Micheloud, O. "Smart Grids: Fundamentos, Tecnologias y Aplicaciones". México: Cengage Learning Editores S.A. de C.V., 2012.
  15. Kaile Zhou, Chao Fu, Shanlin Yang. "Big data driven smart energy management: From big data to big insights", Renewable and Sustainable Energy Reviews 56 , pp: 215-225, 2016.
  16. Rich H. Inman, Hugo T.C. Pedro, Carlos F.M. Coimbra, "Solar forecasting methods for renewable energy integration", Progress in Energy and Combustion Science 39, pp: 535-576, 2013.
  17. J. Antonanzas et al., "Review of photovoltaic power forecasting", Solar Energy 136, pp:78-111, 2016.
Download


Paper Citation


in Harvard Style

Escobedo G., Jacome N. and Arroyo-Figueroa G. (2017). Big Data & Analytics to Support the Renewable Energy Integration of Smart Grids - Case Study: Power Solar Generation . In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS, ISBN 978-989-758-245-5, pages 267-275


in Bibtex Style

@conference{iotbds17,
author={Guillermo Escobedo and Norma Jacome and G. Arroyo-Figueroa},
title={Big Data & Analytics to Support the Renewable Energy Integration of Smart Grids - Case Study: Power Solar Generation},
booktitle={Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS,},
year={2017},
pages={267-275},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={978-989-758-245-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security - Volume 1: IoTBDS,
TI - Big Data & Analytics to Support the Renewable Energy Integration of Smart Grids - Case Study: Power Solar Generation
SN - 978-989-758-245-5
AU - Escobedo G.
AU - Jacome N.
AU - Arroyo-Figueroa G.
PY - 2017
SP - 267
EP - 275
DO -