under smart grid paradigm. In ISGT 2011 India, pages
236–243.
Bhattarai, B. P., Bak-Jensen, B., Pil lai, J. R., and Maier,
M. (2014). Demand flexibility from residential heat
pump. In 2014 IEEE PES General Meeting — Confe-
rence Exposition, pages 1–5.
Caprino, D., Vedova, M. L. D., and Facchinetti, T. (2014).
Peak shaving through real-time scheduling of house-
hold appliances. Energy and Buildings, 75:133 – 148.
Chapman, N., Zhang, L., Good, N., and Mancarella, P.
(2016). Exploring flexibility of aggregated residen-
tial electric heat pumps. In 2016 IEEE International
Energy Conference (ENERGYCON), pages 1–6.
Csetvei, Z., Østergaard, J., and Nyeng, P. ( 2011). Control-
ling price-responsive heat pumps for overload elimi-
nation in distribution systems. In 2011 2nd IEEE PES
International Conference and Exhibition on Innova-
tive Smart Grid Technologies, pages 1–8.
De Angelis, F. , Boaro, M., Fuselli, D., Squartini, S., Piazza,
F., and Wei, Q. (2013). Optimal home energy ma-
nagement under dynamic electrical and t hermal con-
straints. Industrial Informatics, IEEE Transactions
on, 9(3):1518–1527.
Fan, J. and Borlase, S. (2009). The evolution of distribution.
IEEE Power and Energy Magazine, 7(2):63–68.
FERC (2011). Assessment of demand response and advan-
ced metering. Federal Energy Regulatory Commis-
sion, Washington DC, USA, Staff Report.
Good, N., Zhang, L., Navarro-Espinosa, A., and Manca-
rella, P. (2013). Physical modeling of electro-thermal
domestic heating systems with quantification of eco-
nomic and environmental costs. In Eurocon 2013, pa-
ges 1164–1171.
Hedman, K. W., O’Neill, R. P., and Oren, S. S. (2009). Ana-
lyzing valid inequalities of t he generation unit com-
mitment problem. In Power Systems Conference and
Exposition, 2009. PSCE’09. IEEE/PES, pages 1–6.
IEEE.
Klaassen, E., Kobus, C., Frunt, J., and Slootweg, H.
(2016a). Load shifting potential of the washing ma-
chine and tumble dryer. In 2016 IEEE International
Energy Conference (ENERGYCON), pages 1–6.
Klaassen, E. A. M., Frunt, J., and Slootweg, J. G. ( 2016b).
Experimental validation of the demand response po-
tential of residential heating systems. In 2016 Power
Systems Computation Conference (PSCC), pages 1–7.
Kouzelis, K., Tan, Z. H., Bak-Jensen, B., Pillai, J. R.,
and Rit chie, E. (2015). Estimation of residential heat
pump consumption for flexibility market applications.
IEEE Transactions on Smart Grid, 6(4):1852–1864.
Li, W. T., Gubba, S. R., Tushar, W., Yuen, C., Hassan,
N. U., Poor, H. V., Wood, K. L ., and Wen, C. K.
(2017). Data driven electricity management for re-
sidential air conditioning systems: An experimental
approach. IEEE Transactions on Emerging Topics in
Computing, PP(99):1–1.
Loesch, M., Hufnagel, D., Steuer, S., Faßnacht, T., and
Schmeck, H. (2014). Demand side management
in smart buildings by intelligent scheduling of heat
pumps. In 2014 IEEE International Conference on
Intelligent Energy and Power Systems (IEPS), pages
1–6.
Molitor, C., Ponci, F., Monti, A., Cali, D., and M¨uller, D.
(2011). C onsumer benefits of electricity-price-driven
heat pump operation in future smart grids. In 2011
IEEE International Conference on Smart Measure-
ments of Future Grids (SMFG) Proceedings, pages
75–78.
Nielsen, K. M., Pedersen, T. S., and Andersen, P. (2012).
Heat pumps in private residences used for grid balan-
cing by demand desponse methods. In PES T D 2012,
pages 1–6.
SEDC (2014). Mapping demand response in europe today.
Smart Energy Demand Coalition, Brussels, Belgium,
Technical Report.
Strbac, G. (2008). Demand side management: Benefits and
challenges. Energy Policy, 36(12):4419–4426.
US DoE (2006). Benefits of demand response in electricity
markets and recommendations for achieving them. US
Dept. Energy, Washington DC, USA, Technical Re-
port.