pages 57–60. Department of Civil Engineering of the
University of Coimbra and e-GEO, Research Center
in Geography and Regional Planning of the Faculty of
Social Sciences and Humanities of the Nova Univer-
sity of Lisbon.
Boyd, D. and Crawford, K. (2012). Critical questions for
big data: Provocations for a cultural, technological,
and scholarly phenomenon. Information, communica-
tion & society, 15(5):662–679.
Chai, T. and Draxler, R. R. (2014). Root mean square er-
ror (rmse) or mean absolute error (mae)?–arguments
against avoiding rmse in the literature. Geoscientific
Model Development, 7(3):1247–1250.
Coleman, D. J., Georgiadou, Y., Labonte, J., et al. (2009).
Volunteered geographic information: The nature and
motivation of produsers. International Journal of Spa-
tial Data Infrastructures Research, 4(1):332–358.
Elastic (2016). Geohash grid aggregation, elasticsearch ref-
erence 5.0.
FEMA (2016). Cascadia rising 2016.
Freire, S., Florczyk, A., and Ferri, S. (2015). Modeling day-
and night-time population exposure at high resolution:
Application to volcanic risk assessment in campi fle-
grei. In Proceedings of the Twelfth International Con-
ference on Information Systems for Crisis Response
and Management, Kristiansand, Norway.
Gnip (2016). Gnip.
Goodchild, M. F. (2007). Citizens as sensors: the world of
volunteered geography. GeoJournal, 69(4):211–221.
Goodchild, M. F., Aubrecht, C., and Bhaduri, B. (2016).
New questions and a changing focus in advanced vgi
research. Transactions in GIS.
Haines, E. (1994). Point in polygon strategies. Graphics
gems IV, 994:24–26.
Haklay, M. (2010). How good is volunteered geographical
information? a comparative study of openstreetmap
and ordnance survey datasets. Environment and plan-
ning B: Planning and design, 37(4):682–703.
Haklay, M. and Weber, P. (2008). Openstreetmap: User-
generated street maps. IEEE Pervasive Computing,
7(4):12–18.
Heaton, T. H. and Hartzell, S. H. (1987). Earthquake
hazards on the cascadia subduction zone. Science,
236(4798):162–168.
Hochman, H. M. and Rodgers, J. D. (1969). Pareto opti-
mal redistribution. The American Economic Review,
59(4):542–557.
Leong, L., Toombs, D., and Gill, B. (2015). Magic quad-
rant for cloud infrastructure as a service, worldwide.
Analyst (s), 501:G00265139.
Mennis, J. and Hultgren, T. (2006). Intelligent dasymet-
ric mapping and its application to areal interpola-
tion. Cartography and Geographic Information Sci-
ence, 33(3):179–194.
Miller, H. J. (2010). The data avalanche is here. shouldnt we
be digging? Journal of Regional Science, 50(1):181–
201.
Morstatter, F., Pfeffer, J., Liu, H., and Carley, K. M. (2013).
Is the sample good enough? comparing data from
twitter’s streaming api with twitter’s firehose. arXiv
preprint arXiv:1306.5204.
Moussalli, R., Srivatsa, M., and Asaad, S. (2015). Fast and
flexible conversion of geohash codes to and from lat-
itude/longitude coordinates. In Field-Programmable
Custom Computing Machines (FCCM), 2015 IEEE
23rd Annual International Symposium on, pages 179–
186. IEEE.
Octave, G. (2016). Gnu octave.
Oracle (2016). Java software.
PostGIS (2016). Postgis – spatial and geographic objects
for postgresql.
Sagl, G., Resch, B., Hawelka, B., and Beinat, E. (2012).
From social sensor data to collective human behaviour
patterns: Analysing and visualising spatio-temporal
dynamics in urban environments. In Proceedings of
the GI-Forum, pages 54–63.
Services, A. W. (2015). Overview of amazon web services.
Technical report. [Online; accessed 06-November-
2016].
Stewart, R., Piburn, J., Webber, E., Urban, M., Morton, A.,
Thakur, G., and Bhaduri, B. (2015). Can social media
play a role in developing building occupancy curves
for small area estimation? In Proc. 13th Int. Conf.
GeoComp.
Suite, J. T. (2016). Jts topology suite.
Toepke, S. (2016). Structure occupancy curve generation
using geospatially enabled social media data. In 2nd
International Geographical Information Systems The-
ory, Applications and Management, volume 1, pages
32–38.
Toepke, S. L. and Starsman, R. S. (2015). Population
distribution estimation of an urban area using crowd
sourced data for disaster response.
GISTAM 2017 - 3rd International Conference on Geographical Information Systems Theory, Applications and Management
42