A Recommendation System for Enhancing the Personalized Search Itineraries in the Public Transportation Domain

Aroua Essayeh, Mourad Abed

2017

Abstract

In traditional transport information systems, the users must explicitly provide the information related to both their profiles and travels to receive a personalized response. However, this requires, among others, an extra effort from user in term of search time. We aim to identify not only implicitly users’ information, but also to anticipate their need even if some data are missing through a recommender system based on collaborative filtering technique. In this work, the information related to users is represented using the ontology which proved far more adequate model for representing semantically data.

References

  1. Abolghasem Sadeghi, N & Kyehyun, K 2009, 'Ontology based personalized route planning system using a multicriteria decision making approach', vol 36, no. 2250-2259.
  2. Ahn, HJ 2008, 'A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem', vol Volume 178, Issue 1, 2 January 2008, Pages 37-51.
  3. Bouhana , , Zidi, A, Chabchoub, & Abed, M 2015, 'An ontology-based CBR approach for personalized itinerary search systems for sustainable urban freight transport'.
  4. Bouhana, , Fekih, A, Abed, M & Chabchoub, H 2013, 'An integrated case-based reasoning approach for personalized itinerary search in multimodal transportation systems'.
  5. Castellano, , Mesto, , Minunno, M & Alessandra Torsello, 2007, 'Web User Profiling Using Fuzzy Clustering', 2007.
  6. Choia, D-W & Chungb, C-W 2017, 'A K-partitioning algorithm for clustering large-scale spatio-textual data', Information Systems, pp. Information Systems 64 (2017) 1-11.
  7. Gandy, L, Dept. of Comput. Sci., SIU,CIU, Rahimi, S & Gupta, B 2005, 'A modified competitive agglomeration for relational data algorithm', Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American, IEEE.
  8. Hagen, 1999, 'mart Personalization,” Forrester Report'.
  9. Huang , Z & K. Ng, M 1999, 'A Fuzzy k-Modes Algorithm for Clustering Categorical Data', Journal IEEE Transactions on Fuzzy Systems, vol Volume 7 Issue 4, August 1999 Page 446-452.
  10. Jalali, M, Mustapha, N, Sulaiman, MN & Mamat, 2010, 'WebPUM: A Web-based recommendation system to predict user future movements', vol Volume 37, Issue 9, September 2010, Pages 6201-6212.
  11. Jeff M. , P 2013, 'Jaccard Similarity and Shingling', University of Utah.
  12. Kodinariya, TM & Makwana, PR 2013, 'Review on determining number of Cluster in K-Means Clustering', vol Volume 1, Issue 6, November 2013, no. ISSN: 2321-7782.
  13. Lakiotaki, & Matsatsinis, NF 2011, 'Multi-Criteria User Modeling in Recommender Systems', vol Vol26, no. 64 - 76.
  14. Lazzerini, B & Marcelloni, F 2007, 'A hierarchical fuzzy clustering-based system to create user profiles'.
  15. Liu , H, Hu, , Mian, A, Tian, H & Zhu, X 2014, 'A new user similarity model to improve the accuracy of collaborative filtering', vol 56 (2014) 156-166.
  16. Liu, , Mehandjiev, & Xu, D-L 2011, 'Multi-Criteria Service Recommendation Based on User Criteria Preferences'.
  17. Madhulatha, TS 2012, 'An overview on clustering methods,78, CoRR abs/1205.1117.
  18. Marçal de Oliveira, K, Bacha, F, Mnasser, H & Abed, M 2013, 'Transportation ontology definition and application for the content personalization of user interfaces', Expert Systems with Applications , www.elsevier.com/locate/eswa, pp. 3145-3159.
  19. Martin-Bautista, MJ, Kraft, DH, Vila, MA, Chen, J & Cruz, J 2002, 'User profiles and fuzzy logic for web retrieval issues'.
  20. Moreno , A, Valls , A, Isern , D, Marin, L & Borras, J 2013, 'SigTur/E-Destination:Ontology-based personalized recommendation of Tourism and Leisure Activities', vol 26(2013)633-651.
  21. Moussa, , Soui2, M & Abed, 2013, 'User Profile and MultiCriteria Decision Making: Personalization of Traveller's Information in Public Transportation', 17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems -, Procedia Computer Science 22 ( 2013 ) 411 - 420.
  22. Nilashi , M, bin Ibrahim, & Ithnin, N 2014, 'Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and Neuro-Fuzzy system'.
  23. Resnick, , Iacovou, N & Suchak, M 1994, 'GroupLens: An Open Architecture for Collaborative Filtering of Netnews', no. pp. 175-186.
  24. Ricci , , Rokach, L & Shapira, 2015, 'Introduction to Recommender Systems Handbook'.
  25. Sarwar, , Karypis, G, Konstan, & Riedl, 2000, 'Item-based Collaborative Filtering Recommendation Algorithms', viewed 26 May 2016, <http://www10.org/cdrom/papers/519/node12.html>.
  26. Shardanand, U & Maes, 1997, 'Social information filtering: algorithms for automating word of mouth,78.
  27. Teran, & Meier, 2010, 'A Fuzzy Recommender System for eElections'.
  28. Teran, & Meier, 2010, 'A Fuzzy Recommender System for eElections', Electronic Government and the Information Systems Perspective, First International Conference, EGOVIS 2010, Bilbao, Spain, August 31 - September 2, 2010. Proceedings.
  29. Yager, RR 1988, 'On ordered weighted averaging aggregation operators in multi-criteria decision making', IEEE Transactions on Systems, Man and Cybernetics, vol volume 18 Issue 1, January/February 1988 , pp. Pages 183 - 190.
Download


Paper Citation


in Harvard Style

Essayeh A. and Abed M. (2017). A Recommendation System for Enhancing the Personalized Search Itineraries in the Public Transportation Domain . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 415-423. DOI: 10.5220/0006315904150423


in Bibtex Style

@conference{iceis17,
author={Aroua Essayeh and Mourad Abed},
title={A Recommendation System for Enhancing the Personalized Search Itineraries in the Public Transportation Domain},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={415-423},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006315904150423},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - A Recommendation System for Enhancing the Personalized Search Itineraries in the Public Transportation Domain
SN - 978-989-758-247-9
AU - Essayeh A.
AU - Abed M.
PY - 2017
SP - 415
EP - 423
DO - 10.5220/0006315904150423