REFERENCES
Asahara, A., Hayashi, H., and Kai, T. (2015). Moving
point density estimation algorithm based on a gener-
ated bayesian prior. ISPRS International Journal of
Geo-Information, 4(2):515–534.
Bates, P. D. and De Roo, A. (2000). A simple raster-based
model for flood inundation simulation. Journal of hy-
drology, 236(1):54–77.
Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., and Wid-
mann, N. (1999). Spatio-temporal retrieval with ras-
daman. In VLDB, pages 746–749.
Christensen, J. H., Kjellstr
¨
om, E., Giorgi, F., Lenderink, G.,
Rummukainen, M., et al. (2010). Weight assignment
in regional climate models. Climate research (Open
Access for articles 4 years old and older), 44(2):179.
David, H. D. and Thomas, K. P. (1973). Algorithms for the
reduction of the number of points required to represent
a hne or its caricature. The Canadian Cartographer,
10(2):112–122.
Hayashi, H., Asahara, A., Sugaya, N., Ogawa, Y., and
Tomita, H. (2015). Spatio-temporal similarity search
method for disaster estimation. In 2015 IEEE Inter-
national Conference on Big Data (Big Data), pages
2462–2469. IEEE.
Haynes, D., Ray, S., Manson, S. M., and Soni, A. (2015).
High performance analysis of big spatial data. In
2015 IEEE International Conference on Big Data (Big
Data), pages 1953–1957. IEEE.
Hershberger, J. and Snoeyink, J. (1994). An o(nlogn) imple-
mentation of the douglas-peucker algorithm for line
simplification. In Proceedings of the Tenth Annual
Symposium on Computational Geometry, SCG ’94,
pages 383–384, New York, NY, USA. ACM.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.
(2009). Testing e-obs european high-resolution grid-
ded data set of daily precipitation and surface tem-
perature. Journal of Geophysical Research: Atmo-
spheres, 114(D21).
International Standard Organization. ISO IEC CD
9075-15 Information technology – Database
languages – SQL – Part 15: Multi dimen-
sional arrays. http://www.iso.org/iso/home/store/
catalogue tc/catalogue detail.htm?csnumber=67382.
John Shawe-Taylor, N. C. (2004). Kernel Methods for Pat-
tern Analysis. Cambridge University Press.
Kbiob, D. (1951). A statistical approach to some basic mine
valuation problems on the witwatersrand. Journal of
Chemical, Metallurgical, and Mining Society of South
Africa.
Koubarakis, M., Sellis, T., Frank, A. U., Grum-
bach, S., G
¨
uting, R. H., Jensen, C. S., Lorent-
zos, N., Manolopoulos, Y., Nardelli, E., Pernici,
B., et al. (2003). Spatio-temporal databases:
The CHOROCHRONOS approach, volume 2520.
Springer.
Ministry of Land, Infrastructure, Transport and Turism
(2014). National Land Numerical Information Data.
http://nlftp.mlit.go.jp/ksj-e/index.html.
Open Geospatial Consortium (2010). OGC Net-
work Common Data Form (NetCDF) Core En-
coding Standard version 1.0 (10-090r3). http://
www.opengeospatial.org/standards/netcdf.
Oracle (2014). Oracle Spatial and Graph GeoRaster,
ORACLE WHITE PAPER SEPTEMBER 2014.
http://download.oracle.com/otndocs/products/spatial/
pdf/12c/oraspatialfeatures 12c wp georaster wp.pdf.
Pajarola, R. and Widmayer, P. (1996). Spatial index-
ing into compressed raster images: how to answer
range queries without decompression. In Multimedia
Database Management Systems, 1996., Proceedings
of International Workshop on, pages 94–100. IEEE.
Park, S., Bringi, V., Chandrasekar, V., Maki, M., and
Iwanami, K. (2005). Correction of radar reflectiv-
ity and differential reflectivity for rain attenuation
at x band. part i: Theoretical and empirical ba-
sis. Journal of Atmospheric and Oceanic Technology,
22(11):1621–1632.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flan-
nery, B. P. (2007). Numerical Recipes 3rd Edition:
The Art of Scientific Computing. Cambridge Univer-
sity Press, New York, NY, USA, 3 edition.
Seaman, D. E. and Powell, R. A. (1996). An evaluation
of the accuracy of kernel density estimators for home
range analysis. Ecology, 77(7):2075–2085.
Shyu, C.-R., Klaric, M., Scott, G. J., Barb, A. S., Davis,
C. H., and Palaniappan, K. (2007). Geoiris: Geospa-
tial information retrieval and indexing systemContent
mining, semantics modeling, and complex queries.
IEEE Transactions on geoscience and remote sensing,
45(4):839–852.
Silverman, B. W. (1986). Density Estimation for Statistics
and Data Analysis. Chapman and Hall/CRC.
Stonebraker, M., Duggan, J., Battle, L., and Papaem-
manouil, O. (2013). Scidb DBMS research at M.I.T.
IEEE Data Eng. Bull., 36(4):21–30.
the European Climate Assessment & Dataset project team
(2016). European Climate Assessment & Dataset,
Daily Data. http://www.ecad.eu/dailydata/index.php.
Theodoridis, Y., Sellis, T., Papadopoulos, A. N., and
Manolopoulos, Y. (1998). Specifications for effi-
cient indexing in spatiotemporal databases. In Scien-
tific and Statistical Database Management, 1998. Pro-
ceedings. Tenth International Conference on, pages
123–132. IEEE.
Vapnik, V., Golowich, S. E., Smola, A., et al. (1997). Sup-
port vector method for function approximation, re-
gression estimation, and signal processing. Advances
in neural information processing systems, pages 281–
287.
Zhang, J., You, S., and Gruenwald, L. (2010). Indexing
large-scale raster geospatial data using massively par-
allel gpgpu computing. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 450–453,
New York, NY, USA. ACM.
GISTAM 2017 - 3rd International Conference on Geographical Information Systems Theory, Applications and Management
216