ACKNOWLEDGEMENTS
This research is (partially) supported by the Center of
Innovation Program from Japan Science and Technol-
ogy Agency, JST.
REFERENCES
Acharya, U. R., Sudarshan, V. K., Adeli, H., Santhosh, J.,
Koh, J. E. W., Puthankatti, S. D., and Adeli, A. (2015).
A novel depression diagnosis index using nonlinear
features in eeg signals. European Neurology 2015,
74(1–2):79–83.
Agresti, A. (2012). Categorical Data Analysis. Wiley-
Interscience, New Jersey, 3rd edition.
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., and Er-
baugh, J. (1961). An inventory for measureing depres-
sion. Archives of General Psychiatry, 4(6):561–571.
Beekman, A. T., Copeland, J. R., and Prince, M. J.
(1999). Review of community prevalence of depres-
sion in later life. The British Journal of Psychiatry,
174(4):307–311.
Boersma, P. (2001). Praat, a system for doing phonetics by
computer. Glot International, 5:341–345.
Delgado-Rodriguez, M. and Llorca, J. (2004). Bias. Journal
of Epidemiology and Community Health, 58(8):635–
641.
Diagnostic and statistical manual of mental disorders IV
(1994). American Psychiatric Association.
Eyben, F., Wollmer, M., and Schuller, B. (2010). opens-
mile – the munich versatile and fast open-source au-
dio feature extractor. In Proceedings of the 18th ACM
international conference on Multimedia, pages 1459–
1462, Firenze.
Garcia, R. G., Valenza, G., Tomaz, C. A., and Barbieri, R.
(2015). Instantaneous bispectral analysis of heartbeat
dynamics for the assessment of major depression. In
Computing in Cardiology 2015, pages 781–784, Nice.
Goldberg, D. P. (1978). Manual of the General Health
Questionnaire. NFER Publishing, Windsor.
Hagiwara, N., Omiya, Y., Shinohara, S., Nakamura, M., Ya-
sunaga, H., Higuchi, M., Mitsuyoshi, S., and Tokuno,
S. (2016). Validity of the mind monitoring system as a
mental health indicator. In Proceedings of IEEE 16th
International Conference on BioInformatics and Bio-
Engineering, Taichung.
Izawa, S., Sugaya, N., Shirotsuki, K., Yamada, K. C.,
Ogawa, N., Ouchi, Y., Nagano, Y., Suzuki, K., and
Nomura, S. (2008). Salivary dehydroepiandrosterone
secretion in response to acute psychosocial stress
and its correlations with biological and psychological
changes. Biological Psychology, 79(3):294–298.
Jan, A., Meng, H., Gaus, Y. F. A., Zhang, F., and
Turabzadeh, S. (2014). Automatic depression scale
prediction using facial expression dynamics and re-
gression. In Proceedings of the 4th International
Workshop on Audio/Visual Emotion Challenge, pages
73–80, Orlando.
Beck’s Depression Inventory (n.d.). UC Davis Hu-
man Resources, ASAP Resources - Information
Sheets, <http:://www.hr.ucdavis.edu/asap/pdf
files/
Beck
Depression Inventory.pdf>.
World Population Ageing: 1950–2050 (n.d.). United Na-
tions Population Division.
Mitsuyoshi, S. (2015). Development of verbal analy-
sis pathophysiology. Econophysics, Sociophysics &
Other Multidisciplinary Sciences Journal, 5(1):11–
16.
Omiya, Y., Hagiwara, N., Shinohara, S., Nakamura, M.,
Mitsuyoshi, S., and Tokuno, S. (2016). Development
of mind monitoring system using call voice. In Pro-
ceedings of Neuroscience 2016, San Diego.
Sekiyama, A. (2007). Interleukin-18 is involved in alter-
ation of hipothalamic-pituitary-adrenal axis activity
by stress. In Society of Biological Psychiatry Annual
Meeting, San Diego.
Shinohara, S., Mitsuyoshi, S., Nakamura, M., Omiya,
Y., Tsumatori, G., and Tokuno, S. (2016). Valid-
ity of a voice-based evaluation method for effective-
ness of behavioural therapy. In Parvasive Comput-
ing Paradigms for Mental Health, 5th International
Conference, MindCare 2015, Milan, Italy, Septem-
ber 24–25, 2015, Revised Selected Papers, volume
604, pages 43–51. Springer International Publishing,
Switzerland.
Tokuno, S., Mitsuyoshi, S., Suzuki, G., and Tsumatori, G.
(2014). Stress evaluation by voice: a novel stress eval-
uation technology. In 9th International Conference on
Early Psychosis, pages 17–19, Tokyo.