qualifying their engaged-behaviors in interactive sys-
tems: application to a social game. User Modeling
and User-Adapted Interaction, 24:413–451.
de Waard, I. (2015). MOOC factors influencing teachers in
formal education. Revista mexicana de bachillerato a
distancia, 13.
Dey, A. K. (2001). Understanding and using context. Per-
sonal and Ubiquitous Computing, 5:4–7.
Dyke, G., Lund, K., and Girardot, J.-J. (2009). Tatiana:
an environment to support the CSCL analysis pro-
cess. Proceedings of the 9th international confer-
ence on Computer supported collaborative learning
- CSCL’09, pages 58–67.
Few, S. (2013). Information Dashboard Design: Display-
ing data for at-a-glance monitoring. Burlingame, CA:
Analytics Press.
Gilliot, J.-M., Garlatti, S., Rebai, I., and Belen-Sapia, M.
(2013). Le concept de iMOOC pour une ouverture
ma
ˆ
ıtris
´
ee. EIAH 2013-6e Conf
´
erence sur les Environ-
nements Informatiques pour l’Apprentissage Humain.
Greller, W. and Drachsler, H. (2012). Translating learning
into numbers: A generic framework for learning an-
alytics. Educational Technology and Society, pages
42–57.
Iksal, S. and Choquet, C. (2007). Mod
´
elisation et
construction de traces d’utilisation d’une activit
´
e
d’apprentissage: une approche langage pour la
r
´
eing
´
enierie d’un EIAH. Revue des Sciences et Tech-
nologies de l’Information et de la Communication
pour l’Education et la Formation, pages 14–24.
John, B., Thavavel, V., Jayaraj, J., Muthukumar, A., and
Jeevanandam, P. K. (2016). Comparative analysis of
current methods in searching open education content
repositories. The Online Journal of Science and Tech-
nology, pages 21–29.
Kelly, K., Heffernan, N., Heffernan, C., Goldman, S., Pel-
legrino, J., and Soffer Goldstein, D. (2013). Estimat-
ing the effect of web-based homework. The interna-
tional Conference on Artificial Intelligence in Educa-
tion. Springer, Heidelberg, pages 824–827.
Li, X., Eckert, M., Martinez, J. F., and Rubio, G. (2015).
Context aware middleware architectures: Survey and
challenges. Sensors (Switzerland), 15(8).
Martinez-Maldonado, R., Pardo, A., Mirriahi, N., Yacef,
K., Kay, J., and Clayphan, A. (2016). LATUX: an
Iterative Workflow for Designing, Validating and De-
ploying Learning Analytics Visualisations. Journal of
Learning Analytics, 2:9–39.
May, M., George, S., and Pr
´
ev
ˆ
ot, P. (2011). TrAVis to
Enhance Students Self-monitoring in Online Learn-
ing Supported by Computer-Mediated Communica-
tion Tools. Computer Information Systems and Indus-
trial Management Applications, 3:623–634.
Mazza, R. and Dimitrova, V. (2007). CourseVis: A graph-
ical student monitoring tool for supporting instructors
in web-based distance courses. International Journal
of Human Computer Studies, 65:125–139.
Mazza, R. and Milani, C. (2004). GISMO: a Graphical
Interactive Student Monitoring Tool for Course Man-
agement Systems. Technology Enhanced Learning In-
ternational Conference. Milan, pages 18–19.
Nunes, B. P., Fetahu, B., and Casanova, M. A. (2013).
Cite4Me: Semantic Retrieval and Analysis of Scien-
tific Publications. LAK-Data Challenge ’13.
Olmos, M. and Corrin, L. (2012). Academic analytics in
a medical curriculum: Enabling educational excel-
lence. Australasian Journal of Educational Technol-
ogy, 28:1–15.
Park, Y. and Jo, I. H. (2015). Development of the Learn-
ing Analytics Dashboard to Support Students Learn-
ing Performance. UCS, pages 110–133.
Santos, J. L., Verbert, K., Govaerts, S., and Duval, E.
(2013). Addressing Learner Issues with StepUp!: An
Evaluation. Proceedings of the Third International
Conference on Learning Analytics and Knowledge,
pages 14–22.
Scheuer, O. and Zinn, C. (2007). How did the e-learning
session go? The Student Inspector. Proc. of the Conf.
on Artificial Intelligence in Education, pages 487–
494.
Siemens, G., Gasevic, D., Haythornthwaite, C., Dawson, S.,
Shum, S. B., and Ferguson, R. (2011). Open Learning
Analytics : an integrated and modularized platform.
Knowledge Creation Diffusion Utilization, pages 1–
20.
Silius, K., Tervakari, A. M., and Kailanto, M. (2013). Vi-
sualizations of user data in a social media enhanced
web-based environment in higher education. Global
Engineering Education Conference., pages 4893–899.
Speier, C., Valacich, J. S., and Vessey, I. (1999). The influ-
ence of task interruption on individual decision mak-
ing: An information overload perspective. Decision
Sciences, pages 337–360.
Stodder, D. (2013). Data Visualization and Discovery for
Better Business Decisions. TDWI Best Practices Re-
port, Third Quarter, 1:36.
Verbert, K., Duval, E., Klerkx, J., Govaerts, S., and Santos,
J. L. (2013). Learning Analytics Dashboard Applica-
tions. American Behavioral Scientist, 57:1500–1509.
Wolff, A., Zdrahal, Z., Nikolov, A., and Pantucek, M.
(2013). Improving retention: predicting at-risk stu-
dents by analysing clicking behaviour in a virtual
learning environment. Third Conference on Learning
Analytics and Knowledge.
Xhakaj, F., Aleven, V., and McLaren, B. M. (2016). How
Teachers Use Data to Help Students Learn: Contex-
tual Inquiry for the Design of a Dashboard. Euro-
pean Conference on Technology Enhanced Learning.
Springer International Publishing 2016, pages 340–
354.
Xiaoyan, B., White, D., and Sundaram, D. (2012). Contex-
tual adaptive knowledge visualization environments.
Electronic Journal of Knowledge Management, 10:1–
14.
Zarka, R., Champin, P. A., Cordier, A., Egyed-Zsigmond,
E., Lamontagne, L., and Mille, A. (2012). Tstore:
A web-based system for managing, transforming and
reusing traces. ICCBR (2012): True and Story Cases
Workshop, pages 173–182.
Towards Adaptive Dashboards for Learning Analytic - An Approach for Conceptual Design and Implementation
131