REFERENCES
Ali, S. S., Bentayeb, F., Missaoui, R., and Boussaid, O.
(2014). An Efficient Method for Community Detec-
tion Based on Formal Concept Analysis, pages 61–72.
Springer International Publishing, Cham.
Atzmueller, M. (2015). Subgroup and community analyt-
ics on attributed graphs. In Proceedings of the Work-
shop on Social Network Analysis using Formal Con-
cept Analysis.
Aufaure, M.-A. and Le Grand, B. (2013). Advances in fca-
based applications for social networks analysis. Int. J.
Concept. Struct. Smart Appl., 1(1):73–89.
Banerjee, S., Badr, Y., and Al-shammari, E. T. (2014). So-
cial Networks: A Framework of Computational Intel-
ligence, volume 526. Springer Berlin Heidelberg.
Barysheva, A., Golubtsova, A., and Yavorskiy, R. (2015).
Profiling less active users in online communities. In
Proceedings of the Workshop on Social Network Anal-
ysis using Formal Concept Analysis.
Bertet, K. and Monjardet, B. (2010). The multiple facets of
the canonical direct unit implicational basis. Theoret-
ical Computer Science, 411(22–24):2155 – 2166.
Brand˜ao, H. P. and Guimar˜aes, T. d. A. (2001). Gest˜ao de
competˆencias e gest˜ao de desempenho: tecnologias
distintas ou instrumentos de um mesmo construto?
Revista de Administrac¸˜ao de empresas, 41(1):8–15.
Cast, C. (2016). Jobs rated report 2016: Ranking 200 jobs.
Accessed in 2016-12-12.
Codocedo, V., Baixeries, J., Kaytoue, M., and Napoli, A.
(2016). Contributions to the formalization of order-
like dependencies using fca. In Proceedings of the 5th
International Workshop What can FCA do for Artifi-
cial Intelligence. CEUR-WS.
Cordero, P., Enciso, M., Mora, A., Ojeda-Aciego, M., and
Rossi, C. (2015). Knowledge discovery in social net-
works by using a logic-based treatment of implica-
tions. Know.-Based Syst., 87(C):16–25.
Cuvelier, E. and Aufaure, M.-A. (2011). A buzz and e-
reputation monitoring tool for twitter based on ga-
lois lattices. In Conceptual Structures for Discovering
Knowledge, pages 91–103. Springer, Berlin Heidel-
berg.
Dias, S. M. (2016). Reduc¸ ˜ao de Reticulados Conceituais
(Concept Lattice Reduction). PhD thesis, Department
of Computer Science of Federal University of Mi-
nas Gerais (UFMG), Belo Horizonte, Minas Gerais,
Brazil. In Portuguese.
Durand, T. (1998). Forms of incompetence. In Proceed-
ings Fourth International Conference on Competence-
Based Management. Oslo: Norwegian School of Man-
agement.
Ganter, B., Stumme, G., and Wille, R. (2005). Formal con-
cept analysis: foundations and applications, volume
3626. Springer Science & Business Media.
Ganter, B. and Wille, R. (2012). Formal concept analysis:
mathematical foundations. Springer Science & Busi-
ness Media.
Jota Resende, G., De Moraes, N. R., Dias, S. M., Mar-
ques Neto, H. T., and Zarate, L. E. (2015). Canonical
computational models based on formal concept anal-
ysis for social network analysis and representation. In
Web Services (ICWS), 2015 IEEE International Con-
ference on, pages 717–720. IEEE.
Kontopoulos, E., Berberidis, C., Dergiades, T., and Bassili-
ades, N. (2013). Ontology-based sentiment analysis
of twitter posts. Expert Systems with Applications,
40(10):4065 – 4074.
Krajˇci, S. (2014). Social Network and Formal Concept
Analysis, pages 41–61. Springer International Pub-
lishing, Cham.
Li, L., Zheng, G., Peltsverger, S., and Zhang, C. (2016).
Career trajectory analysis of information technology
alumni: A linkedin perspective. In Proceedings of the
17th Annual Conference on Information Technology
Education, SIGITE ’16, pages 2–6, New York, NY,
USA. ACM.
LinkedIn (2016). About linkedin. Accessed in 2016-12-02.
Lorenzo, E. R., Cordero, P., Enciso, M., Missaoui, R., and
Mora, A. (2016). Caisl: Simplification logic for con-
ditional attribute implications. In CLA.
Neto, S. M., Song, M., Dias, S., et al. (2015a). Min-
imal cover of implication rules to represent two
mode networks. In 2015 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT), volume 1, pages 211–
218. IEEE.
Neto, S. M., Song, M. A., Dias, S. M., and Z´arate, L. E.
(2015b). Using implications from fca to represent
a two mode network data. nternational Journal of
Software Engineering and Knowledge Engineering
(IJSEKE).
Neznanov, A. and Parinov, A. (2015). Analyzing social net-
works services using formal concept analysis research
toolbox. In Proceedings of the Workshop on Social
Network Analysis using Formal Concept Analysis.
Rome, J. E. and Haralick, R. M. (2005). Towards a Formal
Concept Analysis Approach to Exploring Communi-
ties on the World Wide Web, pages 33–48. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Russell, M. A. (2013). Mining the Social Web: Data Mining
Facebook, Twitter, LinkedIn, Google+, GitHub, and
More. ” O’Reilly Media, Inc.”.
Snasel, V., Horak, Z., Kocibova, J., and Abraham,
A. (2009). Analyzing social networks using fca:
Complexity aspects. In Web Intelligence and In-
telligent Agent Technologies, 2009. WI-IAT ’09.
IEEE/WIC/ACM International Joint Conferences on,
volume 3, pages 38–41.
Soldano, H., Santini, G., and Bouthinon, D. (2015). Ab-
stract and local concepts in attributed networks. In
Proceedings of the Workshop on Social Network Anal-
ysis using Formal Concept Analysis.
Stattner, E. and Collard, M. (2012). Social-based con-
ceptual links: Conceptual analysis applied to social
networks. In Advances in Social Networks Analy-
sis and Mining (ASONAM), 2012 IEEE/ACM Interna-
tional Conference on, pages 25–29.
Taouil, R. and Bastide, Y. (2001). Computing Proper Impli-
cations. In Proceedings of the International Confer-