cation in java. http://www.journaldev.com/4098/java-
heap-space-vs-stack-memory.
Dragoni, N., Mazzara, M., Giallorenzo, S., Montesi, F., La-
fuente, A. L., Mustafin, R., and Safina, L. (2017). Mi-
croservices: yesterday, today, and tomorrow. In Pre-
sent and Ulterior Software Engineering. Springer Ber-
lin Heidelberg.
Gries, P., Mnih, V., Taylor, J., Wilson, G., and Zamparo, L.
(2005). Memview: A pedagogically-motivated visual
debugger. In Proceedings Frontiers in Education 35th
Annual Conference, pages S1J–11. IEEE.
Huizing, C., Kuiper, R., Luijten, C., and Vandalon, V.
(2012). Visualization of object-oriented (java) pro-
grams. In CSEDU (1), pages 65–72.
Jermakovics, A., Sillitti, A., and Succi, G. (2011). Mi-
ning and Visualizing Developer Networks from Ver-
sion Control Systems. In Proceedings of the 4th In-
ternational Workshop on Cooperative and Human As-
pects of Software Engineering, CHASE ’11, pages
24–31. ACM.
Juett, J. A. (2016). Using Program Visualization to Illumi-
nate the Notional Machine. PhD thesis, University of
Michigan.
Kov
´
acs, G. L., Drozdik, S., Zuliani, P., and Succi, G.
(2004). Open Source Software for the Public Ad-
ministration. In Proceedings of the 6th Internatio-
nal Workshop on Computer Science and Information
Technologies.
Kumar, A. N. (2009). Data space animation for learning
the semantics of c++ pointers. ACM SIGCSE Bulletin,
41(1):499–503.
Lessa, D., Czyz, J. K., and Jayaraman, B. (2010). Jive: A
pedagogic tool for visualizing the execution of java
programs. University at Buffalo, Tech. Rep.
Maurer, F., Succi, G., Holz, H., K
¨
otting, B., Goldmann, S.,
and Dellen, B. (1999). Software Process Support over
the Internet. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages
642–645. ACM.
Mehner, K. (2002). Javis: A uml-based visualization and
debugging environment for concurrent java programs.
In Software Visualization, pages 163–175. Springer.
Moons, J. and De Backer, C. (2013). The design and pi-
lot evaluation of an interactive learning environment
for introductory programming influenced by cognitive
load theory and constructivism. Computers & Educa-
tion, 60(1):368–384.
Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M.
(2004). Visualizing programs with jeliot 3. In Procee-
dings of the working conference on Advanced visual
interfaces, pages 373–376. ACM.
Moser, R., Pedrycz, W., and Succi, G. (2008). A compara-
tive analysis of the efficiency of change metrics and
static code attributes for defect prediction. In Pro-
ceedings of the 30th International Conference on Soft-
ware Engineering, ICSE 2008, pages 181–190. ACM.
Mota, M. P., Pereira, L. W. K., and Favero, E. L.
(2008). Javatool: Uma ferramenta para o ensino de
programac¸
˜
ao. In Congresso da Sociedade Brasileira
de Computac¸
˜
ao. Bel
´
em. XXVIII Congresso da Socie-
dade Brasileira de Computac¸
˜
ao, pages 127–136.
Oechsle, R. and Schmitt, T. (2002). Javavis: Automatic pro-
gram visualization with object and sequence diagrams
using the java debug interface (jdi). In Software visu-
alization, pages 176–190. Springer.
Oracle (2016). Java platform debugger architecture (jpda).
http://docs.oracle.com/javase/7/docs/technotes/
guides/jpda/.
Oroma, J. O., Wanga, H., and Ngumbuke, F. (2012). Chal-
lenges of teaching and learning computer program-
ming in developing countries: Lessons from tumaini
university.
Pedrycz, W. and Succi, G. (2005). Genetic granular classi-
fiers in modeling software quality. Journal of Systems
and Software, 76(3):277–285.
Pedrycz, W., Succi, G., Sillitti, A., and Iljazi, J. (2015). Data
description: A general framework of information gra-
nules. Knowl.-Based Syst., 80:98–108.
Reiss, S. P. (2009). Visualizing the java heap demonstra-
tion proposal. In Software Maintenance, 2009. ICSM
2009. IEEE International Conference on, pages 389–
390. IEEE.
Safina, L., Mazzara, M., Montesi, F., and Rivera, V. (2016).
Data-driven workflows for microservices: Genericity
in jolie. In 2016 IEEE 30th International Conference
on Advanced Information Networking and Applicati-
ons (AINA), pages 430–437.
Scarpino, M. (2008a). Interfacing with the cdt debug-
ger, part 1: Understand the c/c++ debugger inter-
face. http://www.ibm.com/developerworks/library/os-
eclipse-cdt-debug1/.
Scarpino, M. (2008b). Interfacing with the cdt debug-
ger, part 2: Accessing gdb with the eclipse cdt and
mi. http://www.ibm.com/developerworks/library/os-
eclipse-cdt-debug2/.
Scotto, M., Sillitti, A., Succi, G., and Vernazza, T. (2004). A
Relational Approach to Software Metrics. In Procee-
dings of the 2004 ACM Symposium on Applied Com-
puting, SAC ’04, pages 1536–1540. ACM.
Smith, P. A. and Webb, G. I. (1995). Reinforcing a gene-
ric computer model for novice programmers. ASCI-
LITE’95.
Sorva, J., Karavirta, V., and Malmi, L. (2013). A review
of generic program visualization systems for introduc-
tory programming education. ACM Transactions on
Computing Education (TOCE), 13(4):15.
Succi, G., Paulson, J., and Eberlein, A. (2001). Preliminary
results from an empirical study on the growth of open
source and commercial software products. In EDSER-
3 Workshop, pages 14–15.
Virtanen, A. T., Lahtinen, E., and J
¨
arvinen, H.-M. Vip, a
visual interpreter for learning introductory program-
ming with c++.
Watson, C. and Li, F. W. (2014). Failure rates in intro-
ductory programming revisited. In Proceedings of the
2014 conference on Innovation & technology in com-
puter science education, pages 39–44. ACM.
Yurichev, D. (2013). C/c++ programming language notes.
http://yurichev.com/writings/C-notes-en.pdf.
ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering
240