Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository

Mohamad Omar Nachawati, Alexander Brodsky, Juan Luo

2017

Abstract

Enterprises across all industries increasingly depend on decision guidance systems to facilitate decision-making across all lines of business. Despite significant technological advances, current paradigms for developing decision guidance systems lead to a tight-integration of the analytic models, algorithms and underlying tools that comprise these systems, which inhibits both reusability and interoperability. To address these limitations, this paper focuses on the development of the Unity analytics engine, which enables the construction of decision guidance systems from a repository of reusable analytic models that are expressed in JSONiq. Unity extends JSONiq with support for algebraic modeling using a symbolic computation-based technique and compiles reusable analytic models into lower-level, tool-specific representations for analysis. In this paper, we also propose a conceptual architecture for a Decision Guidance Management System, based on Unity, to support the rapid development of decision guidance systems. Finally, we conduct a preliminary experimental study on the overhead introduced by automatically translating reusable analytic models into tool-specific representations for analysis. Initial results indicate that the execution times of optimization models that are automatically generated by Unity from reusable analytic models are within a small constant factor of that of corresponding, manually-crafted optimization models.

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia, USA.
  2. Alter, S. (1980). Decision support systems: current practice and continuing challenges, volume 157. AddisonWesley Reading, MA.
  3. Arnott, D. R. (1998). A framework for understanding decision support systems evolution. In 9th Australasian Conference on Information Systems, Sydney, Australia: University of New South Wales.
  4. Bamford, R., Borkar, V., Brantner, M., Fischer, P. M., Florescu, D., Graf, D., Kossmann, D., Kraska, T., Muresan, D., Nasoi, S., et al. (2009). Xquery reloaded. Proceedings of the VLDB Endowment, 2(2):1342-1353.
  5. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: A cpu and gpu math compiler in python. In Proc. 9th Python in Science Conf, pages 1-7.
  6. Brodsky, A., Egge, N. E., and Wang, X. S. (2012). Supporting agile organizations with a decision guidance query language. Journal of Management Information Systems, 28(4):39-68.
  7. Brodsky, A., Krishnamoorthy, M., Bernstein, W. Z., and Nachawati, M. O. (2016a). A system and architecture for reusable abstractions of manufacturing processes. In Big Data (Big Data), 2016 IEEE International Conference on, pages 2004-2013. IEEE.
  8. Brodsky, A. and Luo, J. (2015). Decision guidance analytics language (dgal)-toward reusable knowledge base centric modeling. In ICEIS (1), pages 67-78.
  9. Brodsky, A., Luo, J., and Nachawati, M. O. (2016b). Toward decision guidance management systems: Analytical language and knowledge base. Department of Computer Science, George Mason University, 4400:22030-4444.
  10. Brodsky, A. and Wang, X. S. (2008). Decision-guidance management systems (dgms): Seamless integration of data acquisition, learning, prediction and optimization. In Hawaii International Conference on System Sciences, Proceedings of the 41st Annual, pages 71- 71. IEEE.
  11. Chamberlin, D., Florescu, D., Robie, J., Simeon, J., and Stefanescu, M. (2003). Xquery: A query language for xml. In SIGMOD Conference, volume 682.
  12. Davenport, T. H. and Harris, J. G. (2005). Automated decision making comes of age. MIT Sloan Management Review, 46(4):83.
  13. Egge, N., Brodsky, A., and Griva, I. (2013). An efficient preprocessing algorithm to speed-up multistage production decision optimization problems. In System Sciences (HICSS), 2013 46th Hawaii International Conference on, pages 1124-1133. IEEE.
  14. Florescu, D. and Fourny, G. (2013). Jsoniq: The history of a query language. IEEE internet computing, 17(5):86- 90.
  15. Fourer, R., Gay, D. M., and Kernighan, B. W. (1990). A modeling language for mathematical programming. Management Science, 36(5):519-554.
  16. Fourer, R. and Orban, D. (2010). Drampl: a meta solver for optimization problem analysis. Computational Management Science, 7(4):437-463.
  17. Hackathorn, R. D. and Keen, P. G. (1981). Organizational strategies for personal computing in decision support systems. MIS quarterly, pages 21-27.
  18. Haettenschwiler, P. (2001). Neues anwenderfreundliches konzept der entscheidungsunterstützung. Gutes entscheiden in wirtschaft, politik und gesellschaft, pages 189-208.
  19. Hentenryck, P. V. (2002). Constraint and integer programming in opl. INFORMS Journal on Computing, 14(4):345-372.
  20. Joyner, D., C?ertík, O., Meurer, A., and Granger, B. E. (2012). Open source computer algebra systems: Sympy. ACM Communications in Computer Algebra, 45(3/4):225-234.
  21. Lammel, R. and Verhoef, C. (2001). Cracking the 500- language problem. IEEE software, 18(6):78-88.
  22. Lubin, M. and Dunning, I. (2015). Computing in operations research using julia. INFORMS Journal on Computing, 27(2):238-248.
  23. Luo, J., Brodsky, A., and Li, Y. (2012). An em-based ensemble learning algorithm on piecewise surface regression problem. International Journal of Applied Mathematics and Statistics, 28(4):59-74.
  24. Meleanca?, R. (2013). Will decision management systems revolutionize marketing? Procedia-Social and Behavioral Sciences, 92:523-528.
  25. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al. (2016). Mllib: Machine learning in apache spark. Journal of Machine Learning Research, 17(34):1-7.
  26. Parikh, M., Fazlollahi, B., and Verma, S. (2001). The effectiveness of decisional guidance: an empirical evaluation. Decision Sciences, 32(2):303-332.
  27. Patterson, A., Bonissone, P., and Pavese, M. (2005). Six sigma applied throughout the lifecycle of an automated decision system. Quality and Reliability Engineering International, 21(3):275-292.
  28. Pivarski, J., Bennett, C., and Grossman, R. L. (2016). Deploying analytics with the portable format for analytics (pfa). In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 579-588. ACM.
  29. Power, D. J. (2001). Supporting decision-makers: An expanded framework. Proceedings of Informing Science and IT Education, pages 1901-1915.
  30. Shneiderman, B. (1975). Experimental testing in programming languages, stylistic considerations and design techniques. In Proceedings of the May 19-22, 1975, national computer conference and exposition, pages 653-656. ACM.
  31. Silver, M. S. (1991). Decisional guidance for computerbased decision support. MIS Quarterly, pages 105- 122.
  32. Taylor, J. (2011). Decision management systems: a practical guide to using business rules and predictive analytics. Pearson Education.
  33. Taylor, J. (2015). Analytics capability landscape.
Download


Paper Citation


in Harvard Style

Nachawati M., Brodsky A. and Luo J. (2017). Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 312-323. DOI: 10.5220/0006338703120323


in Bibtex Style

@conference{iceis17,
author={Mohamad Omar Nachawati and Alexander Brodsky and Juan Luo},
title={Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={312-323},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006338703120323},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Unity Decision Guidance Management System: Analytics Engine and Reusable Model Repository
SN - 978-989-758-247-9
AU - Nachawati M.
AU - Brodsky A.
AU - Luo J.
PY - 2017
SP - 312
EP - 323
DO - 10.5220/0006338703120323