Cuzzocrea, A.: Accuracy Control in Compressed Mul-
tidimensional Data Cubes for Quality of Answer-
based OLAP Tools. In: Proc. of IEEE SSDBM 2006,
pp. 301–310, 2006
Cuzzocrea, A., Folino, F., Guarascio, M., Pontieri, L.: A
Multi-view Learning Approach to the Discovery of
Deviant Process Instances. In: Proc. of CoopIS 2015,
pp. 146–165, 2015
Cuzzocrea, A., Furfaro, F., Sacc`a, D.: Enabling OLAP in
mobile environments via intelligent data cube com-
pression techniques. Journal of Intelligent Information
Systems (33)(2), pp. 95–143 (2009)
Cuzzocrea, A., Matrangolo, U.: Analytical Synopses for
Approximate Query Answering in OLAP Environ-
ments. In: Proc. of DEXA 2004, pp. 359–370, 2004
van Dongen, B.:
http://dx.doi.org/10.4121/
uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
van Dongen et al.: The ProM framework: A new era in
process mining tool support. In: Proc. of 26th 10th
Int. Conf. on Applications and Theory of Petri Nets
(ICATPN’05), pp. 444–454 (2005)
Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer,
B.: Weka - a machine learning workbench for data
mining. In: The Data Mining and Knowledge Discov-
ery Handbook, pp. 1305–1314 (2005)
Japkowicz, N., Stephen, S.: The class imbalance problem:
A systematic study. Intelligent Data Analysis 6(5), pp.
429–449 (2002)
Kubat, M., Holte, R., Matwin, S.: Learning when negative
examples abound. In: Proc. of 9th Europ. Conf. on
Machine Learning (ECML’97), pp. 146–153 (1997)
Langley P., Iba W., Thompson K.: An analysis of Bayesian
classifiers. In: Proc. of 10th Nat. Conf. on Artificial
intelligence (AAAI’92), pp. 223–228 (1992)
Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classifica-
tion of software behaviors for failure detection: A dis-
criminative pattern mining approach. In: Proc. of 15th
Int. Conf. on Knowledge Discovery and Data Mining
(KDD’09), pp. 557–566 (2009)
Nguyen, H., Dumas, M., Rosa, M.L., Maggi, F.M., Suriadi,
S.: Mining business process deviance: A quest for ac-
curacy. In: Proc. of 2014 Int. Conf. On the Move to
Meaningful Internet Systems (OTM’14), pp. 436–445
(2014)
Quinlan, J.R.: C4.5: programs for machine learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA (1993)
Folino, F., Guarascio, M., Pontieri, L.: Mining predic-
tive process models out of low-level multidimensional
logs. In: Proc. of 26th Int. Conf. on Advanced Infor-
mation Systems Engineering (CAISE’14), pp. 533–
547 (2014)
Blum A. and Mitchell T.: Combining labeled and unlabeled
data with co-training. In: Proc. of the 11th Conf. on
Computational Learning Theory (COLT’98), pp. 92–
100 (1998)
Nigam K., Ghani R.: Analyzing the effectiveness and ap-
plicability of co-training. In: Proc. of the 9th Int.
Conf. on Information and Knowledge Management
(CIKM’00), pp. 86–93 (2000)
Wang W., Zhou Z.H.: A new analysis of co-training. In:
Proc. of the 27th Int. Conf. on Machine Learning
(ICML’10), pages 1135–1142, 2010.
Domingos P., Pazzani M.J.: Beyond Independence: Condi-
tions for the Optimality of the Simple Bayesian Clas-
sifier. In: Proc. 13th Int. Conf. on Machine Learning
(ICML’96). pp.105–112 (1996)
Domingos P., Pazzani M.J.: On the Optimality of the Sim-
ple Bayesian Classifier under Zero-One Loss. Ma-
chine Learning 29, pp.103–130 (1997)
Keogh E.J., Pazzani M.J.: Learning the Structure of Aug-
mented Bayesian Classifiers. Int. J. Artificial Intelli-
gence Tools, 11(40), pp. 587–601 (2002)
Ying Y. et al.: To Select or To Weigh: A Comparative Study
of Linear Combination Schemes for SuperParent-
One-Dependence Estimators. IEEE Transactions on
Knowledge and Data Engineering, 19(12), pp.1652–
1665 (2007)
Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering
based on conserved patterns: Towards achieving bet-
ter process models. In: Proc. of Business Process
Management Workshops (BPI’10), vol. 43, pp. 170–
181 (2010)
Sahami M.: Learning Limited Dependence Bayesian Clas-
sifiers. In: Proc. 2nd ACM SIGKDD of Int. Conf.
Knowledge Discovery and Data Mining (KDD’96),
pp. 334–338 (1996)
Suriadi S., Chun O., van der Aalst W.M.P., ter Hofstede
A.H.M. : Root Cause Analysis with Enriched Process
Logs. In: Business Process Management Workshops
2012, pages 174–186, 2013.
Swinnen, J., Depaire, B., Jans, M.J., Vanhoof, K.: A pro-
cess deviation analysis - A case study. In: Proc. of
2011 Business Process Management Workshops, pp.
87–98 (2011)
Webb G.I., Boughton J., Wang Z. Not So Naive Bayes:
Aggregating One-Dependence Estimators. Machine
Learning, 58(1), pp. 5–24 (2005)
Zhang, G.P.: Neural networks for classification: a survey.
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 30(4), pp. 451–
462 (2000)
Zhang, H., Jiang, L., Su, J.: Hidden naive bayes. In: Proc
of AAAI, pp. 919–924 (2005)
Witten, I.H., Frank, E.: Data Mining: Practical Machine
Learning Tools and Techniques, Second Edition (Mor-
gan Kaufmann Series in Data Management Systems).
Morgan Kaufmann Publishers Inc. (2005)