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Abstract: Tactical planning consists to develop production plans by determining the quantities of products 

manufactured  by period to best meet customer demand at lower costs. This issue has been widely 

discussed, according to two criteria: multi level and single level planning. The concept of multi level 

reflects well the manufacturing structure. For this, we propose in this work a new mathematical model of lot 

sizing finite capacity (Multi Level Capacitated Lot Sizing Problem) based on Lagrangian relaxation 

optimization approach. Comparisons of this new model with traditional one demonstrate the efficiency of 

this new approach as well in simulated case as real situations. The generated production plans are optimal 

with 68% -98% compared to classical models. 

1 INTRODUCTION 

We are always looking for a relatively effective 

solution that can help increase the level of 

performance of production systems. This problem of 

planning and scheduling production with limited 

capacity resources reflects setup times, waiting and 

production as well as different costs of production. 

The formulations of the Big Bucket model (BB) 

as Capacitated Lot Sizing Problem (CLSP) are 

considered as a reference model for addressing the 

plan generation of problematic production manager 

in a single site environment (Comelli et al. 2008), 

the Multi Level Capacitated Lot Sizing Problem 

(MLCLSP), is recognized as a reference model and 

deals with Manufacturing Resources Planning (MRP 

and MRPII) issues, can be found in the literature for 

some studies this problem (Almeder et al.2011, 

Berretta et al.2005, Chen &Chu2003). If single site 

issues have been extensively studied in the literature 

(Nascimento et al.2010) point to the lack of a 

reference model for multi site issues. This model 

only determines the production quantities and 

periods, regardless of the actual production sequence 

of commands within a period of time. This type of 

modeling has the advantage that it allows flexible 

sequencing orders in a period, a significant cost 

calculation. For small-Bucket models (SB) are 

known, the Continuous Setup Lot Sizing Problem 

(PRSP) and the Proportional Lot Sizing and 

Scheduling Problem (PLSP). 

The problem Multi Level Capacitated Lot Sizing 

Problem (MLCLSP) is one of the most difficult 

optimization problems known in the production. It 

arises in any company that uses the sequential 

approach to planning MRP. The approach was based 

on the control of quantities on demand, compliance 

with the BOM structure and the level of stock. 

Consideration of production capacity and 

product classifications pushed the authors to 

consider the multiplicity of production resources 

(Buschkuhl et al.2008), and we will find models of 

mono or multi resource. Multi resource models 

enable more accurate modeling of the operating 

range of the various products and better estimate the 

capacity of the production system. (Bel 1998) 

demonstrated that to find feasible solutions for 

MLCLSP is NP-complete, and when there are 

considered setup time. Therefore, the proposed 

Lagrangian heuristics include a feasibility strategy to 

find feasible solutions from the penalization of the 

constraints of the problem. 

Most of the models and algorithms proposed 

MLCLSP (Tempelmeier et al.2008) rely on one of 

two possibilities: either the lead time is neglected, 

and the lead time is taken into account, there is at 

least one period for each component, forcing the 

transit time (the number of periods) of finished 
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products to be at least equal to the number of levels 

of the BOM. 

According to studies, the hypothesis of zero lead 

time leads to plans that are not feasible, and the 

lower level of scheduling problem is infeasible. On 

the other side, if the lead time is positive, it usually 

results in significant amounts of work in process, 

causing subsequently increase the number of levels 

in the nomenclature. This problem has been studied 

by different researchers (Buschkühl et al.2010). 

A recent study on the different model 

formulations and solution methods for MLCSP is in 

(Almeder et al.2014), the authors proposed two 

models: one is batching and the other is streaming 

lot. Computations indicate clearly that the solutions 

obtained by MLCLSP are infeasible, and the lead 

time excessive work in process from 15% to 60% 

increase in the overall cost, they deployed the 

algorithms Benders (Almeder et al.2014) variant 

with a sanctions significant contribution to improve 

the computational effort to find satisfactory 

solutions. 

The main contributions of our study are as follows: 

We show that the solutions obtained with lead time 

are feasible. We propose a linear programming 

formulation integer. Regarding the approach of the 

Lagrangian relaxation is to relax capacity constraints 

while penalizing their violation in the objective 

function, our experiences show that calculation 

variant polarization capacity constraints give the 

best solution of the problem. The comparison with 

traditional models, we demonstrate the ability of this 

new approach with more realistic results (68% -98 

%). 

In Section 2, we propose the new formulations of 

the MLCLSP problem with major constraints. In 

Section 3, we present our optimization approach to 

problem solving with the new formulation of the 

model, and in section 4, we apply the standard 

reference instances and we compare the results with 

those of classical MLCLSP. 

2 PLANNING MODEL GENERIC 

2.1 Classic Models 

In supply chain management, support for the 

medium term decision can be considered in the 

construction of a solution (such a plan) it is to build 

and generate a solution. The generative of this 

approach is shown in Figure 1 (Sambasivan et 

al.2002). 

 

Figure 1: Generative approach (Sambasivan et al.2002). 

Production management, where the models were 

more widely used, the approach described above 

concerning the planning model. We use planning 

model into an optical performance evaluation to 

build an optimal plan. 

In this article, we present the classical model of 

MLCLSP planning aims to generate a production 

plan that minimizes the sum of setup costs and 

inventory costs, while respecting the constraints of 

stock and capacity. 

The objective function of MLCLSP model is as 

follows: 

 

Min∑N
i=1 ∑T

t=1 (Ci.Yit+Hi.Iit)  (1) 

 

Under the constraints: 

Iit+1=Iit+Xi(t-li)-∑N
j=1aij*Xjt- Dit                         i,t (2) 

∑N
i=1 Pi*Xit≤ Ct                                                          i,t (3) 

Xit ≤ G*Yit                                                                      i,t (4) 

Iit≥0 ,  Xit≥0                                             i,t            (5) 

Yitϵ{0,1}                                               i,t (6) 
 

Model parameters: 

i : Product 

t: Period 

Pi: Time to produce a unit of product i 

Ci: Cost of setup of product i 

Dit: Demand for the product i at time t (external) 

G: Arbitrarily large number (e.g., total demand or    

maximum capacity)  

Hi: The cost of stock of product i 

Ct: The available capacity (time) at time t 

li: Lead time of item i (non negative integer 

corresponding to the number of periods) 

aij : Amount of product i to produce a unit of product 

j (gozinto-factor). 

 

Decision variables: 

Iit: Stock level of product at the end of period t 

Xit: Quantity of product i in period t 
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1 if the product and manufactured in the 

period  

 0 no production 

The objective function (1) minimizes the total 

cost involved in the production plan, namely the 

costs of production and storage, as well as fixed 

setup costs, inventory costs. Constraint (2) expresses 

the conservation of flux across the horizon with the 

stress of lead time. Constraint (3) expresses the fact 

that the plan that we would calculate to be finite 

capacity. Indeed, for the realization of a plan, we 

have an amount of resources that will be consumed 

by the production of one or more references. Total 

consumption should be less than the available 

capacity. Constraint (4) to model the following 

condition: if the setup of production, while the 

quantity produced must not exceed an upper bound 

of the output G. This represents the minimum 

between the maximum amount of the reference can 

be produced and the total demand on the horizon [t, 

.., T]. Constraint (5) means that Xit and Iit variables 

are continuous no negative for any reference i, for 

each period t. The last constraint (6) expresses the 

fact that Yit is a binary variable for any reference i in 

each period t. 

Many researchers are studying this model, 

assume that the lead time is negligible, to the effect 

that the predecessors and successors could be 

produced in the same period ( l = 0 for all i ). The 

MLCLSP is a model BB and the periods are 

supposed to cover the long time intervals with a 

number of production batches, so it would result in 

significant amounts of work in production. If we 

assume that the lead time is positive for at least one 

period ( l = 1 for all i ) , we deliver the requested 

quantity respecting the delivery time , There is 

always in practice, there is always the possibility of 

use of overtime to make production in our model the 

objective function (1) does not account for 

additional fabrication. 

To verify the model, the example of Table 1 

represents a lot sizing problem in 2 periods, 4 

products and unconstrained capacity, Figure 2 shows 

the structure of the nomenclature (Almeder et al. 

2014). 

Table 1: Data example. 

Product Di1 Di2 Hi Ci Pi 

1 3 0 3 5 0.1 

2 0 2 2 5 0.1 

3 0 0 2 5 0.1 

4 0 0 1 5 0.1 

 
 
 
 
 
 

 

Figure 2: Example of nomenclature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Limitation of the Multi Level Capacitated Lot 

Sizing Problem.  

The configuration presented in Figure 3 provides 

the solution of the classical model, if we assume that 

the lead time is negligible, and no setup change to 

produce the product 4 , but with this solution we do 

not respond to the objective function to optimize the 

cost of the stock. 

With this plan in Figure 4, we produce only the 

amount requested for each period, for example in the 

period 1 we produce an amount of  3 units of 

product 4, we change the setup to produce product 3 

and subsequently the product 1, which results in a 

delay in customer demand level for product 1 

because production will end in period 2. So with this 

solution we are not optimizing the cost of setup and 

customer demand. 

Yit 1 

4 

3 

2 

t 

t 

t 

t 

Period1 Period2 

5units of Product 4 

2units of Product 2 

3units of Product 3 

3units of Product 1 

  Setting stock 

Product 

Period2 
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Figure 4: Limitation of the Multi Level Capacitated Lot 

Sizing Problem.  

2.2 Proposed Model 

If we consider the two plans proposed above, we 
notice that the constraint that violates our 
optimization objective function is the constraint of 
stock (2), so we propose a new formulation which 
provides an optimal solution for our model, applying 
the product of the net principle need i at time t, we 
produce the necessary need in period t, and our 
formulation we consider a lead time period to meet 
customer delivery time. 
 

The proposed new constraint: 
Iit+1= Dit-Iit-Xi(t-li)                                                  i,t (7) 

This plan in Figure 5, allows us to produce our 

net needs at time t, if we take our example, our net 

need for the period 1 of the finished product 1 is 3 

units, so for the produce we must have 3 units of 

subsets 3 and 4, with this solution we gain at the cost 

of stock, the same principle to produce the finished 

product 2. 

We implemented the proposed model in CPLEX 

12.2 (User’s Guide Standard Version Including 

CPLEX Directives.2010), to see if our new 

formulation is optimized for our objective function. 

After the simulation, results are optimized with a 

target of 40. 
 
 
 
 

 

Figure 5: Verification of our new formulation.  

 

Figure 6: Simulation results with CPLEX Solver.  

3 OPTIMIZITION METHOD 

3.1 Lagrangian Relaxation 

The Lagrange relaxation technique has been the 

subject of several studies (Fisher, M 2004) and was 

raised in the problems of integration of production. 

// solution (optimal) with objective 40 

plan[1][1]= 

<fabrication:1,production:3,stock:0> 

plan[1][2]= 

<fabrication:1,production:0,stock:0> 

plan[2][1]= 

<fabrication:1,production:0,stock:0> 

plan[2][2]= 

<fabrication:1,production:0,stock:0> 

plan[3][1]= 

<fabrication:1,production:0,stock:0> 

plan[3][2]= 

<fabrication:1,production:0,stock:0> 

plan[4][1]= 

<fabrication:1,production:0,stock:0> 

plan[4][2]= 

<fabrication:1,production:0,stock:0> 
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This method can be used to approximate solutions, 

seek a lower bound (ZLB) of the problem or to 

obtain more optimal solutions. (Wu et al.2013) 

developed a strategy for finding upper bounds 

(ZUB) on the relaxation using Lagrangian for a lot 

sizing problem with multiple products. A 

metaheuristic was proposed in (Toledo et al.2014) to 

resolve an extension of CLSP with to carry over. 

(Nascimento et al.2010) proposed a strategy that 

incorporates a genetic algorithm with a linear 

program to find approximate solutions to a lot sizing 

level problem and scheduling. 

The approach of the Lagrangian relaxation is to 

relax a subset of constraints while penalizing their 

violation in the objective function by associating a 

Lagrangian multiplier λit. 

As shown in section 2, our new formulation of 

MLCLSP model allows us to achieve an optimal 

plan, but draws the MLCLSP is a BB model and 

periods are supposed to cover long intervals with 

several production batches, so it would lead to a 

significant production capacity, and our equation (3) 

expresses that our plan must be calculated with finite 

capacity. That is why the approach of the 

Lagrangian relaxation will be based on the 

penalization of capacity constraints. (Berretta et 

al.2005) presented a heuristic based on the 

Lagrangian relaxation of the capacity constraints of 

the mathematical formulation. To find a lower 

bound (ZLB) for the problem.  

Our news formulation of the objective function 

is: 

Min∑N
i=1∑T

t=1(Ci.Yit+Hi.Iit) +  

∑N
i=1∑T

t=1λit(Ct-∑N
i=1Pi*Xit)                        (8) 

Under the constraints: 

Iit+1= Dit-Iit-Xi(t-li)                                                         i,t             

(9) 

Xit ≤ G*Yit                                               i,t          (10) 

Iit≥0 ,  Xit≥0                                             i,t          (11) 

Yitϵ{0,1}                                                 i,t           (12) 

(Sambasivan et al.2005) points out three main 

approaches in his study: the sub-gradient method 

and the multiplier λit adjustment method. This last 

and according to (Fisher, M 2004) proved to be too 

costly compared to the sub-gradient method. 

Although the adjustment method has a high 

potential, exceeding the sub-gradient method in 

some case studies, but the sub-gradient is the most 

used to determine the Lagrange multipliers tool. 

So to solve this dual problem, the method chosen 

is the sub-gradient. The sub-gradient algorithm 

introduced in (8). It updates iteratively multipliers: 

λit= max {0; λit+TGi)                       i,t                  (13) 

T is the step of the iteration method, and Gi is the 

difference between the time required to produce all 

units of product i in period t and the capacity limit in 

period t, calculated in Equation (14): 

Gi= Ct-∑N
i=1Pi*Xit                                          i,t                  (14) 

It is necessary to initialize the values T and λit for 

each iteration. The step T is important to optimize 

our solution.  

The choice of the step size T, is of importance 

for the convergence of the sub-gradient method for 

the optimal solution. Thus, the T update is given by 

the equation below: 

T =π (ZUB-ZLB)/Gi²                                            (15) 

Figure 4 shows the algorithm of the principle of our 

approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Flowchart of the principle of our approach. 

To ensure the convergence of the method, the 

solutions at each iteration step means that the T 

tends to 0. According to the equation (15) T depends 

the upper bound (ZUB) and the lower bound (ZLB), 

if no lower bound is found to iterate , so the solution 

is infeasible. (Almeder,C.2010) most BB models 

provide the best lower bound. 

Following algorithm shows a pseudo code of our 

approach to feasibility of the solution: 

Data: Approximate dual solution  

Result: Either a heuristic solution for 

the primal problem or infeasible 

solution 

Fin 

Initialize π & λit 
 

Calculate Subgradient 
 

Calculate step T 
 

Lagrangian problem solver 

 

ZLB found 

Update λit 
λit =max(0 ; λit+TGi) 

Infeasible 

solution 

Yes 

Increment 
iteration 

No 
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Repeat 

Initialize arrays and variables used in 

the loop that follows 

Initialize π ]0; 2] 

Initialize λit values 

Executes Lower Bound and Upper Bound 

model 

Calc sub-gradient Gi= Ct-∑Pi*Xit 

Calc T = π(ZUB−ZLB)/Gi² 

Solve the model to get the Upper 

Bound 

Update λit to pass it as input data to 

Lower Bound model in next iteration 

End loop 

4 SIMULATION 

The optimal solution of the lot sizing problem 

presented in Table 3 is obtained using Lagrangian 

relaxation. The results are obtained by the linear 

programming solver integer CPLEX 12.2 (User’s 

Guide Standard Version Including CPLEX 

Directives.2010). 

All tests were implemented in C ++ and run on a 

PC with 4G HP Core i5 processor. 

4.1 Test Instances  

We have carried out tests on a series of instances of 

(C.Almeder et al.2014). The characteristics of bodies 

are described in Table 2. 

Table 2: Instances of C.Almeder et al. (2014). 

Class Instances Periods Products 

A 1500 4 10 

B 600 4 10 

C 599 16 40 

D 573 16 40 

4.2 Analysis of Proposed Method 

The model MLCLSP feasibility problem is to 

consider a minimum period of lead time. As 

mentioned previously this period may cause 

amounts of work in production, then a substantial 

increase in the stock. 

(C.Almeder et al.2014) demonstrated the 

infeasibility of the MLCLSP problem by running the 

model with conventional test instances without 

synchronization with a period of lead time. With a 

run time limit of 10 minutes for CPLEX.  

This document puts the Lagrangian strategies for 

the upper and lower bounds of good quality for cases 

tested and shows that our proposed approach will 

guarantee us an optimal solution for the proposed 

production plans with consideration of one period of 

lead time.  

Table 3 presents results obtained by CPLEX 

Solver and table 4 presents the resulting solutions 

for our approach, the columns show the lower bound 

greater than the percentage of optimality GAP = 

(ZUB- ZLB) / ZUB for each test class to improve 

our cost model by considering a period of lead time. 

Table 3: Simulation with CPLEX Solver. 

Class 
(Instance) 

CPLEX 

GAP Time 

A(1500) 14% 30s 

B(600) 35,25% 9s 

C(599) infeasible _ 

D(573) infeasible _ 

Table 4: Simulation with Lagrangian approach. 

Class 
(Instance) 

RL 

ZUB ZLB GAP Time 

A(1500) 205,5 26 87,34% 5s 

B(600) 206,5 66 68,03% 6s 

C(599) 16363 808 95% 25s 

D(573) 16362 168 98,97% 26s 

Table 4 presents the best values of the proposed 

method of MLCLSP. So with the relaxation of 

Lagrangian approach, we find optimal solutions with 

87.34% for Class A, 68.03% for Class B, 95% for 

Class C and 98.97% for Class D.  

Table 3 shows that the solutions implemented in 

CPLEX, are optimal with 14% for Class A and 

35.25% for Class B, but for Class C and Class D 

solutions are infeasible. 

 

Figure 8: Results obtained for SB. 

This graph shows that with the Lagrangian approach 

we obtain the best optimal solutions for the model 
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SB, even if we increase the instance. On the other 

hand, we observe that the results obtained with the 

CPLEX solver are lower and decrease with the 

increase of the instance.  

 

Figure 9: Results obtained for BB. 

On this graph, we show that for the model BB 

our plan remains optimal with the Lagrangian 

approach, but for CPLEX Solver the solution is 

infeasible. 

So we show with our new formulation, BB or SB 

model is optimized, resulting in a clear cost estimate 

from stock and production and in parallel we are 

responding to the constraint of important quantities 

of production work, which request the use of 

overtime to make up for production. 

Comparing the results with those obtained by the 

classical MLCLSP, we realize a 4.5% increase to 

that produced by the Benders algorithms proposed 

by (C.Almeder et al.2014). 

 

Figure 10: The trend for SB. 

The Proposed formulation we guarantee an 

optimal solution after less 5s for SB and less than 

25s for BB. The penalization of capacity constraint 

provides lower bound to optimize our objective 

function even if we consider the lead time. Figures 

10 and 11, we show the improvement of the 

objective value of the best solution for the cases 

studied. Trends show that the improvement is 

achieved in the initial iterations. 

  

Figure 11: The trend for BB. 

5 CONCLUSION 

This paper presented a new formulation and solution 

for the multi level capacitated lot sizing problem 

(MLCLSP) with considering one period of lead time 

that requires an important quantity of production 

work requesting thus the use of overtime to make up 

for production. 

Besides, the proposed optimization method of 

our problem was Lagrangian relaxation based on the 

penalization capacity constraints. The performance 

on several classes with different instances generated 

was compared with the CPLEX Solver, and the 

results show the efficiency of 68% to 98.97%. It 

should be noted that the proposed model is more 

suitable with the production constraints of planning. 

We also remember that this approach is now under 

implementation for real situations. 
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