with Perceptual Similarity Metrics based on Deep
Networks. In arXiv preprint arXiv:1602.02644.
Ertosun, M. G. and Rubin, D. L. (2015). Probabilistic
Visual Search for Masses within Mammography Im-
ages using Deep Learning. In 2015 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine
(BIBM), pages 1310–1315.
Frans, K. (2016). Generative Adversarial Networks
Explained. http://kvfrans.com/generative-adversial-
networks-explained/.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich Feature Hierarchies for Accurate Object Detec-
tion and Semantic Segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 580–587.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. Book in preparation for MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative Adversarial Nets. In
Advances in Neural Information Processing Systems,
pages 2672–2680.
Guttenberg, N., Sinapayen, L., Yu, Y., Virgo, N., and Kanai,
R. (2016). Recurrent Generative Auto-encoders and
Novelty Search. http://www.araya.org/archives/1306.
Hajian-Tilaki, K. (2013). Receiver Operating Characteris-
tic (ROC) Curve Analysis for Medical Diagnostic Test
Evaluation. Caspian Journal of Internal Medicine,
4(2):627.
Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr,
P., Moore, R., Chang, K., and Munishkumaran, S.
(1998). Current Status of the Digital Database for
Screening Mammography. In Digital Mammography,
pages 457–460. Springer.
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-
r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T. N., et al. (2012). Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups. IEEE Signal
Processing Magazine, 29(6):82–97.
Kingma, D. P. and Welling, M. (2013). Auto-encoding Vari-
ational Bayes. arXiv preprint arXiv:1312.6114.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105.
Lalkhen, A. G. and McCluskey, A. (2008). Clinical Tests:
Sensitivity and Specificity. Continuing Education in
Anaesthesia, Critical Care & Pain, 8(6):221–223.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learn-
ing. Nature, 521(7553):436–444.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. (2013). Distributed Representations of
Words and Phrases and Their Compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.
Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learn-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 22(10):1345–1359.
Pewsner, D., Battaglia, M., Minder, C., Marx, A., Bucher,
H. C., and Egger, M. (2004). Ruling a Diagnosis In
or Out with SpPIn and SnNOut: a Note of Caution.
BMJ, 329(7459):209–213.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised Representation Learning with Deep Convo-
lutional Generative Adversarial Networks. CoRR,
abs/1511.06434.
Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic Backpropagation and Approximate Infer-
ence in Deep Generative Models. arXiv preprint
arXiv:1401.4082.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).
Learning Internal Representations by Error Propaga-
tion. Technical report, DTIC Document.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. (2016). Improved Tech-
niques for Training GANs. In Proceedings of NIPS
2016.
Salimans, T., Kingma, D. P., Welling, M., et al. (2015).
Markov chain Monte Carlo and Variational Inference:
Bridging the Gap. In International Conference on Ma-
chine Learning, pages 1218–1226.
Santoro, A., Bartunov, S., Botvinick, M., Wierstra,
D., and Lillicrap, T. (2016). One-shot Learning
with Memory-Augmented Neural Networks. arXiv
preprint arXiv:1605.06065.
Sharma, A. (2015). DDSM Utility.
https://github.com/trane293/DDSMUtility.
Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016a).
Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. arXiv preprint
arXiv:1602.07261.
Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016b).
Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. arXiv preprint
arXiv:1602.07261.
BREASTCANCER.ORG (2016). U.S. Breast Cancer
Statistics. http://www.breastcancer.org/symptoms/
understand
bc/statistics.
Weinstein, S., Obuchowski, N. A., and Lieber, M. L. (2005).
Clinical Evaluation of Diagnostic Tests. American
Journal of Roentgenology, 184(1):14–19.
Wong, T. Y. and Bressler, N. M. (2016). Artifi-
cial Intelligence With Deep Learning Technology
Looks Into Diabetic Retinopathy Screening. JAMA,
316(22):2366–2367.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How Transferable are Features in Deep Neural Net-
works? In Proceedings of NIPS, pages 3320–3328.
Towards Novel Methods for Effective Transfer Learning and Unsupervised Deep Learning for Medical Image Analysis
39