Herrera, L. J., Fernandes, C. M., Mora, A. M., Migo-
tina, D., Largo, R., Guill
´
en, A., and Rosa, A. C.
(2013). Combination of heterogeneous EEG feature
extraction methods and stacked sequential learning for
sleep stage classification. International Journal of
Neural Systems, 23(03):1350012.
Hinton, G. E. (2002). Training products of experts by mini-
mizing contrastive divergence. Neural Computation,
14(8):1771–1800.
Hinton, G. E. (2012). A practical guide to training Re-
stricted Boltzmann Machines. In Montavon, G., Orr,
G. B., and M
¨
uller, K.-R., editors, Neural networks:
tricks of the trade, pages 599–619. Springer.
Hossain, J. L. and Shapiro, C. M. (2002). The prevalence,
cost implications, and management of sleep disorders:
an overview. Sleep and Breathing, 6(02):085–102.
Keyvanrad, M. A. and Homayounpour, M. M. (2014). A
brief survey on deep belief networks and introducing
a new object oriented toolbox (DeeBNet). Technical
Report, Laboratory for Intelligent Multimedia Proces-
sing, Computer Engineering and Information Techno-
logy Department, Amirkabir University of Techno-
logy, Tehran, Iran.
Kolla, B. P., Mansukhani, S., and Mansukhani, M. P. (2016).
Consumer sleep tracking devices: a review of mecha-
nisms, validity and utility. Expert Review of Medical
Devices, 13(5):497–506.
Kurihara, Y. and Watanabe, K. (2012). Sleep-stage decision
algorithm by using heartbeat and body-movement sig-
nals. IEEE Transactions on Systems, Man, and Cyber-
netics – Part A: Systems and Humans, 42(6):1450–
1459.
Kwapisz, J. R., Weiss, G. M., and Moore, S. A. (2011).
Activity recognition using cell phone accelerometers.
SIGKDD Explorations Newsletter, 12(2):74–82.
L
¨
angkvist, M., Karlsson, L., and Loutfi, A. (2012).
Sleep stage classification using unsupervised feature
learning. Advances in Artificial Neural Systems,
2012(3):1–9.
O’Hare, E., Flanagan, D., Penzel, T., Garcia, C., Frohberg,
D., and Heneghan, C. (2015). A comparison of radio-
frequency biomotion sensors and actigraphy versus
polysomnography for the assessment of sleep in nor-
mal subjects. Sleep and Breathing, 19(1):91–98.
Panagiotou, C., Samaras, I., Gialelis, J., Chondros, P., and
Karadimas, D. (2015). A comparative study between
SVM and fuzzy inference system for the automatic
prediction of sleep stages and the assessment of sleep
quality. In Proc. 9th Int. Conf. on Pervasive Compu-
ting Technologies for Healthcare, pages 293–296.
Panossian, L. A. and Avidan, A. Y. (2009). Review of
sleep disorders. Medical Clinics of North America,
93(2):407–425.
Radha, M., Garcia-Molina, G., Poel, M., and Tononi, G.
(2014). Comparison of feature and classifier algo-
rithms for online automatic sleep staging based on a
single EEG signal. In Proc. 36th Annual Int. Conf.
of the IEEE Engineering in Medicine and Biology So-
ciety, pages 1876–1880.
Rahman, T., Adams, A. T., Ravichandran, R. V., Zhang, M.,
Patel, S. N., Kientz, J. A., and Choudhury, T. (2015).
Dopplesleep: A contactless unobtrusive sleep sensing
system using short-range doppler radar. In Proc. ACM
Int. Joint Conf. on Pervasive and Ubiquitous Compu-
ting, pages 39–50.
Reimer, U. and Maier, E. (2016). An application framework
for personalised and adaptive behavioural change sup-
port systems. In Proc. 2nd Int. Conf. on Information
and Communication Technologies for Ageing Well and
e-Health (ICT4AWE).
Reimer, U., Maier, E., Laurenzi, E., and Ulmer, T. (2017).
Mobile stress recognition and relaxation support with
SmartCoping: User adaptive interpretation of physio-
logical stress parameters. In Proc. Hawaii Int. Conf.
on System Sciences (HICSS-50).
Shi, J., Liu, X., Li, Y., Zhang, Q., Li, Y., and Ying, S.
(2015). Multi-channel EEG-based sleep stage classifi-
cation with joint collaborative representation and mul-
tiple kernel learning. Journal of Neuroscience Met-
hods, 254:94–101.
Sohm, M. (2016). Erkennung von komplexen Aktivit
¨
aten
anhand von tragbaren Sensoren. Master thesis, Uni-
versity of Applied Sciences, Vorarlberg.
Subramanian, S., Hesselbacher, S. E., Aguilar, R., and Su-
rani, S. R. (2011). The NAMES assessment: a no-
vel combined-modality screening tool for obstructive
sleep apnea. Sleep and Breathing, 15(4):819–826.
Tinguely, G., Landolt, H.-P., and Cajochen, C. (2014).
Schlafgewohnheiten, Schlafqualit
¨
at und Schlafmittel-
konsum der Schweizer Bev
¨
olkerung: Ergebnisse aus
einer neuen Umfrage bei einer repr
¨
asentativen Stich-
probe. Therapeutische Umschau, 71(11):637–646.
Recognizing Sleep Stages with Wearable Sensors in Everyday Settings
179