REFERENCES
Ali, H., Paar, G., and Paletta, L. (2007a). Semantic indexing
for visual recognition of buildings. In 5th Int. Symp.
on Mobile Mapping Technology. Citeseer.
Ali, H., Seifert, C., Jindal, N., Paletta, L., and Paar, G.
(2007b). Window detection in facades. In Image Anal-
ysis and Processing, 2007. ICIAP 2007. 14th Interna-
tional Conference on, pages 837–842. IEEE.
Baatz, G., K
¨
oser, K., Chen, D., Grzeszczuk, R., and Polle-
feys, M. (2010). Handling urban location recognition
as a 2d homothetic problem. In European Conference
on Computer Vision, pages 266–279. Springer.
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2007). Greedy layer-wise training of deep networks.
In Advances in NIPS 19, pages 153–160.
Bres, S. and Tellez, B. (2006). Localisation and aug-
mented reality for mobile applications in culture her-
itage. Lyon: INSA.
Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977).
An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software (TOMS), 3(3):209–226.
Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning
algorithm for deep belief nets. Neural Computation,
18(7):1527–1554.
Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Makantasis, K., Karantzalos, K., Doulamis, A., and
Loupos, K. (2015). Deep learning-based man-made
object detection from hyperspectral data. In Interna-
tional Symposium on Visual Computing, pages 717–
727. Springer.
Mnih, V. and Hinton, G. E. (2012). Learning to label aerial
images from noisy data. In Proceedings of the 29th In-
ternational Conference on Machine Learning, ICML
2012,. icml.cc / Omnipress.
Montavon, G., Orr, G., and Muller, K.-R. (2012). Neural
Networks: Tricks of the Trade. Springer Berlin Hei-
delberg.
M
¨
uller, P., Zeng, G., Wonka, P., and Van Gool, L. (2007).
Image-based procedural modeling of facades. ACM
Transactions on Graphics (TOG), 26(3):85.
Olojede, A. and Suleman, H. (2015). Investigating image
processing algorithms for navigating cultural heritage
spaces using mobile devices. In International Con-
ference on Asian Digital Libraries, pages 215–224.
Springer.
Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y.,
and Dellaert, F. (2008). Detecting and matching re-
peated patterns for automatic geo-tagging in urban en-
vironments. In Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, pages
1–7. IEEE.
Shechtman, E. and Irani, M. (2007). Matching local self-
similarities across images and videos. In 2007 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE.
Singhal, A., Luo, J., and Zhu, W. (2003). Probabilistic spa-
tial context models for scene content understanding.
In Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Confer-
ence on, volume 1, pages I–235. IEEE.
Tell, D. and Carlsson, S. (2000). Wide baseline point match-
ing using affine invariants computed from intensity
profiles. In European Conference on Computer Vi-
sion, pages 814–828. Springer.
Tell, D. and Carlsson, S. (2002). Combining appearance
and topology for wide baseline matching. In Euro-
pean Conference on Computer Vision, pages 68–81.
Springer.
Wendel, A., Donoser, M., and Bischof, H. (2010). Unsuper-
vised facade segmentation using repetitive patterns. In
Joint Pattern Recognition Symposium, pages 51–60.
Springer.
Xiao, J., Fang, T., Zhao, P., Lhuillier, M., and Quan, L.
(2009). Image-based street-side city modeling. ACM
Transactions on Graphics (TOG), 28(5):114.