
An Intercepting API-Based Access Control Approach for Mobile
Applications

Yaira K. Rivera Sánchez1, Steven A. Demurjian1 and Lukas Gnirke2
1Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, U.S.A.

2Department of Computer Science, Oberlin College, Oberlin, OH, U.S.A.

Keywords: Access Control, Application Programming Interface (API), Authorization, Data Management, Mobile
Application, Mobile Computing, Representational State Transfer (REST), Role-Based Access Control
(RBAC).

Abstract: Mobile device users employ mobile applications to realize tasks once limited to desktop devices, e.g., web
browsing, media (audio, video), managing health and fitness data, etc. While almost all of these applications
require a degree of authentication and authorization, some involve highly sensitive data (PII and PHI) that
must be strictly controlled as it is exchanged back and forth between the mobile application and its server
side repository/database. Role-based access control (RBAC) is a candidate to protect highly sensitive data of
such applications. There has been recent research related to authorization in mobile computing that has
focused on extending RBAC to provide a finer-grained access control. However, most of these approaches
attempt to apply RBAC at the application-level of the mobile device and/or require modifications to the
mobile OS. In contrast, the research presented in this paper focuses on applying RBAC to the business layer
of a mobile application, specifically to the API(s) that a mobile application utilizes to manage data. To
support this, we propose an API-Based approach to RBAC for permission definition and enforcement that
intercepts API service calls to alter information delivered/stored to the app. The proposed intercepting API-
based approach is demonstrated via an existing mHealth application.

1 INTRODUCTION

In the last decade, the increase of mobile devices
(e.g., smartphones, phablets, tablets) has led to the
decrease in the usage of stationary devices (e.g.,
desktop computers). Mobile devices have taken over
daily tasks such as reading a document, browsing the
internet, managing emails, gaming, social media,
health & fitness, e-books, banking, email, music, etc.
According to (Lella et al., 2015), mobile application
(app) usage is rapidly increasing among mobile
device users, surpassing the time spent on a mobile
device web browser as well as the time spent
utilizing their desktop computers.

Mobile applications often contain dynamic data,
which requires delivering data taken from a data
source (e.g., repository, database, etc.) and/or storing
data to/from the source, both at frequent intervals. In
order to do these types of data transactions between
a mobile app and a server/database, an Application
Programming Interface (API) is utilized. The data
that is displayed/obtained from an application can

vary in sensitivity, ranging from seen by anyone
(non-sensitive data) to custom subsets for specific
users (highly sensitive data such as personally
identifiable information (PII) and protected health
information (PHI)). Access control mechanisms are
commonly utilized to secure highly sensitive data in
order to control which information each user can
access/store in a particular system, with the proviso
that disclosing the wrong information could lead to
serious consequences (Rindfleisch, 1997). The three
dominant access control models (Sandhu and
Samarati, 1994) to achieve this are: role-based
access control (RBAC) which defines roles with
permissions on objects that are assigned to users;
discretionary access control (DAC) where security
policies are established based on the user’s identity
and authorization and can be delegated; and,
mandatory access control (MAC) where sensitivity
levels (Top Secret, Secret, Confidential, and
Unclassified) are assigned to objects (classifications)
and users (clearances) to control who can see what.

The work presented in this paper focuses on

Sánchez, Y., Demurjian, S. and Gnirke, L.
An Intercepting API-Based Access Control Approach for Mobile Applications.
DOI: 10.5220/0006354301370148
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 137-148
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

137

securing highly sensitive information (PII and PHI)
that is present in many mobile applications and is
accessible via an API, where the data transactions
between a mobile app and a server are performed via
calls to the services of the API. This is achieved via
the utilization of RBAC in a two-phase process of
definition and enforcement on a user of a mobile app
with a given role to control which services of the
app’s API can be invoked. First, RBAC permissions
are defined on a role-by-role basis on the API
services of the mobile app to identify which services
can be called by which user by role utilizing the
mobile app. Second, RBAC enforcement is achieved
at runtime by intercepting each of the mobile app
calls of a user by role on authorized services in order
to perform real-time permission checks. Our choice
of RBAC to control APIs is motivated by its wide
usage for securing highly sensitive data for:
corporate data (West, 2015); and, healthcare data in
electronic health records (Fernández-Alemán et al.,
2013). Another motivation for the latter case is the
emergent Fast Healthcare Interoperability Resources
(FHIR) (FHIR, 2016) standard for exchangeable
healthcare resources that are accessible via an API
from EHRs and other health information technology
systems.

Through the mobile app API, we seek to provide
a means for a user playing a role to be constrained to
deliver/store data by limiting access to API services
when utilizing the mobile app via the interception of
the API services. According to (Cobb, 2014), every
API service should be verified to ensure that the user
accessing the mobile app has the necessary
permissions to manage the requested data. The
Intercepting API-Based approach presented in this
paper supports the interception of API services by
generating a new API that mirrors the original
mobile app API (in terms of signatures) and serves
as a wrapper which includes calls to the original
mobile app API to proceed based on RBAC checks
that control the data that is displayed (delivered) and
managed (stored). The larger intent of our research
would be to define RBAC, MAC, and DAC
permissions on API services and intercept calls for
access control permission checks that determine the
filtered information returned to the mobile app and
control information that can be stored in the mobile
application's server. For the purposes of this paper,
we focus on RBAC.

The remainder of the paper has five sections.
Section 2 reviews background on RBAC and APIs,
motivates the need to securely control APIs in
mobile apps, and describes the Connecticut
Concussion Tracker (CT2) mHealth app for tracking

concussions from kindergarten to 12th grade. Section
3 introduces the Intercepting API-Based approach
for RBAC definition and enforcement and,
underlying infrastructure to secure data in mobile
applications through a combination of API and
RBAC in order to realize the intercepting API-based
approach. Section 4 provides a proof-of-concept
demonstration of the intercepting API-based
approach into the CT2 mHealth app and discusses the
limitations of our work and possible solutions.
Section 5 compares and contrasts related work to our
approach. Finally, Section 6 concludes the paper and
discusses ongoing work.

2 BACKGROUND, MOTIVATION,
AND THE CT2 MHEALTH APP

This section provides: background on RBAC and
APIs; motivation on the increasing role of APIs and
a need for security; and, a review of the Connecticut
Concussion Tracker (CT2) mHealth application.

First, access control mechanisms are utilized to
manage which permissions should be granted or
denied in regards to the resources of a system or
application. One of the most popular mechanisms is
role-based access control (RBAC), proposed in
(Ferraiolo and Kuhn, 1992) and established as a
standard (Ferraiolo et al., 2001) in 2004. In RBAC,
users are assigned roles and each role contains
different permissions, which contain the policies of
which operations and objects a user with a particular
role can have access to. Note that each user is
limited to one assigned role per session. For the
purposes of our paper, we apply RBAC concepts at
the API level of the mobile app in support of the
proposed approach to define by role which services
of the API can be called at which times and under
which conditions that are then enforced when a
service is invoked by a user/role combination.

Second, in order to do data transactions between
a server/database and a mobile application, many
developers utilize the Application Programming
Interface (API) concept. This consists of different
tools, protocols, and libraries used to interface data
to an application (Beal, 2014). Basically, the client
sends a request through the means of a URL, the
API receives the URL and interprets it, and then
sends this to the data source. The data source will
then execute the request and send back a response to
the API. The API encodes the response in a human-
readable format (e.g., JSON, XML) and sends the
response in this format to the client. Some

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

138

advantages of APIs are: utilized in several
applications as most of them are modular (e.g.,
Facebook Graph API (Facebook, 2014)); useful in
applications that contain dynamic data; facilitate the
sharing of data or processes between two systems;
and, are highly interoperable (Developer Program,
2012; Flanders et al., 2012). The concept of API
originated with traditional desktop devices and is
now being heavily utilized in mobile applications.
The proposed intercepting API-based approach is
aimed towards APIs that are built under the REST
architectural style (REST API Tutorial, 2012) and
that use HTTP as a transfer protocol (Rouse, 2006).

In terms of motivating the ideas in the paper, we
acknowledge one of the most recognized options to
display (deliver) and manage (store) dynamic data in
a mobile app is to utilize the concept of API.
However, before attempting to implement an API,
one must evaluate their security risks and their
effective management (Collet, 2015). For example,
consider the recent security breaches in Snapchat
and Instagram APIs. Snapchat, a mobile app that
enables users to view and send self-destructive
pictures and videos (Snapchat, 2011), had a data
breach that affected 4.6 million users (Snapchat,
2013). The company quickly posted a statement
revealing that the vulnerability allowed individuals
to compile a database that contained usernames and
phone numbers of users of the mobile app and, that
this problem came from their private API. To
address this issue, Snapchat is attempting to identify
which third-party applications offered in the iTunes
store and Google Play store are accessing their
private API and any application that uses it is
accessing Snapchat’s information without their
permission (Zeman, 2015). Instagram, a mobile app
that allows users to take pictures and share them
with family and friends (Instagram, 2010), had a
password breach in 2015 (Dellinger, 2015). The
breach allowed a third-party application to steal
more than 500,000 usernames and passwords, and
used the information to post spam on Instagram
accounts without permission. To remedy this,
Instagram is now reviewing all of the applications
that utilize their API and adding new usage policies
(Larson, 2015). Clearly both public and private APIs
need to be continuously secured and monitored to
prevent disclosure of restricted information from
occurring. To address this issue, a number of
companies have added security and associated
management mechanisms to APIs.

Lastly, to serve as an example throughout the
paper and in support of the prototyping of Section 4,
the Connecticut Concussion Tracker (CT2) mHealth

application, database, and its server are utilized. CT2
is a collaboration between the Departments of
Physiology and Neurobiology, and Computer
Science & Engineering at the University of
Connecticut and Schools of Nursing and Medicine in
support of a new law passed in the state of
Connecticut to track concussions of kids between
ages 7 to age 19 in public schools (CT Law
HB6722) (Connecticut General Assembly, 2015).
The CT2 application is for Android and iOS devices
and utilizes a REST API in order to manage its data.
The CT2 mHealth app contains seven tabs (‘Home’,
‘List’, ‘Student’, ‘Cause’, ‘Symptoms’, ‘Follow-up’,
and ‘Return’) where: the ‘Home’ tab allows the user
to add a concussion, to retrieve an open case, or to
find a student by name; the ‘List’ tab which contains
the list of students the user has permission to view
and, for each student gives him/her the option to add
a concussion or edit an existing one; the ‘Student’
tab (left screen in Figure 1) allows the user to input
the student’s general information (e.g., name,
birthdate, school) and the date of concussion; the
‘Cause’ tab (right screen in Figure 1) allows the user
to specify how an where the concussion occurred;
the ‘Symptoms’ tab allows users to record the
symptoms the student had within 48 hours and other
pertinent data; the ‘Follow-up’ tab allows users to
record the status of the student over time; and the
‘Return’ tab allows users to specify when the student
can return to various activities at school.

Figure 1: Two Screens of the CT2 mHealth App.

3 INTERCEPTING API-BASED
APPROACH

In this section, the Intercepting API-Based approach
is explored. This approach offers the versatility of
intercepting original API service calls and has no

An Intercepting API-Based Access Control Approach for Mobile Applications

139

impact on the source code of the mobile application.
We differentiate between three types of APIs in the
discussion: the original mobile app APIs that are
used by the mobile app; the intercepting mobile app
APIs that have the same signatures as the original
mobile app APIs to replace these and provide
permission checks; and, the renamed mobile app
APIs (former original mobile app APIs) that are
wrapped by the intercepting mobile app APIs. The
remainder of this section provides details of our
proposed intercepting API-based approach by:
defining the architecture of a mobile app extended
with our work in Section 3.1; classifying the services
of an API so that they can be assigned to users by
role in Section 3.2; explaining the interactions and
infrastructure of the intercepting API-based
approach in Section 3.3; and, by reporting the
programmatic changes needed in order to apply the
approach to a mobile app in Section 3.4.

3.1 Proposed Architecture

For the general architecture of a mobile app we
employ a client mobile app (Microsoft Corporation,
2008) augmented with the intercepting API-based
approach. We focus on client applications since
these are easier to maintain and assume that the app
is always fully connected to the Internet. This
assumes that all of the data is processed server-side
and does not contain cache and local data. The
architecture consists of four main layers as shown in
the left side of Figure 2: the User Layer which
symbolizes the users of the mobile application; the
Presentation Layer which consists of the UI
components of the mobile application; the Business
Layer which contains the logic of the mobile app
(e.g., libraries, APIs, source code); and, the Data
Layer which contains all of the data the mobile app
manages (e.g., retrieves, inserts).

The right side of Figure 2 details the architecture
of the intercepting API-based approach across the
four layers in three groups. The first group, Role
Assignment, involves the user layer and contains the
users of the mobile app and their assigned roles.
This is achieved via a separate user interface the
security administrator will have access to in order to
manage users and roles (not shown or discussed).
The second group, Define RBAC Permissions on
API Services by Role, spans the presentation and
business layers and contains the original mobile app
API services to retrieve/insert data from/into the data
source. This group is utilized to define RBAC
permissions on a role-by-role basis on which mobile
app API services are authorized to each role, which

in turn will be assigned to different users. Once
permissions by role on the mobile app API are
defined, our approach can intercept API services
utilized by the mobile app in order to perform
security and permissions checks. To transition from
the second to third group, our intercepting API-
based approach utilizes the data layer as a pass via
the renamed API service calls, and as a result, does
not require modifying the source code of the mobile
app in order to achieve. Lastly, the third group,
Enforce Permissions on API Services by Role,
contains the RBAC policies that need to be
incorporated in the original data source(s) so that
they can be enforced. This includes a new set of
intercepting API services that must be defined and
then utilized to replace the original mobile app API
services to enforce the defined RBAC policies to
control the data that is displayed (delivered) and
managed (stored) on a user/role combination.

Figure 2: Intercepting API-Based Approach Architecture.

To illustrate the third group, Figure 3 details the
modifications of the original API services that are
needed for interception. Specifically, for a mobile
app, there is a set of original mobile app API
services, as shown in the left side of Figure 3. To
maintain the functionality of the mobile app and
provide an ability to continue to invoke services by
name, the original mobile app API services are
renamed (as shown on the right side of Figure 3) in
order to reuse the original name of the original
service for the new intercepting API services so that
services from the mobile app remain unchanged
(would now be occurring against the intercepting
services). For each original mobile app API service,
we define a corresponding intercepting API service,
as shown in the bottom (middle) part of Figure 3,
that is able to: perform RBAC security checks for
the user/role combination; call the corresponding

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

140

mobile app API service (if it is allowed); and then
return either filtered data (retrievals) or a
success/failure (inserts, updates, or deletes) status.

The mobile app is still able to invoke the same
APIs by name and signature, which are now the
intercepting API services (with the same signature)
that are able to step in and interrupt the process. As a
result, the intercepting API services act as a wrapper
that adds a security layer to the original API
services. The dashed arrows in Figure 3 indicate that
the process of renaming the original API services as
well as the process of creating the intercepting file
needs to be done only once. Therefore, the developer
only needs to create these files once and after that
security administrators can manage the RBAC
policies without modifying the server-side portion of
the mobile app through the means of a separate user
interface. The solid arrow indicates the way that the
API behaves when a user makes a request through
the mobile app; first, the request is intercepted in
order to be evaluated with the pertinent access
control policies and then, depending on the result,
we either proceed to execute the request or send an
error message to the user who sent the request.

Figure 3: Conceptual API Process.

3.2 Classifying Services of APIs

This section discusses the way that the API of a
mobile app is viewed from a RBAC security
perspective in order to control who can invoke
which service(s) of an API at which times, and the
way that each service is viewed from a security
standpoint. From a RBAC perspective, we partition
the services of an API into two broad categories:
secure and unsecure services. Secure services are a
subset of the API that require control from a security
perspective and can be assigned to individual roles.
Not all of the API services need to be in the secure
category; for example, API services to load drop
downs, display web content, etc., may not need to be
secure. The secure API services are the ones that
will lead to data that is stored/edited/displayed that
must be controlled by role. Unsecure services need

not be assigned and are available to any user.
The following four definitions formalize a

mobile app, a role, and permissions for services.

Defn. 1: A mobile application MA has an API α =
{α , α ,… , α } where each α is a service
that has a service name, set of service
parameters, and a return type. Note that
services are either web or cloud APIs.

Defn. 2: A role r is defined as a two-pair
, with unique identifier

and name	 .
Defn. 3: The API α of a mobile application MA can

be partitioned into two disjoint sets Secure
API Sα and Unsecure API Uα in regards to
the services that are to be assigned by role:
 Secure API Sα α are the services of

MA that need to be controlled.
 Unsecure API Uα α are the services

of MA that do not need to be
controlled where α = Sα Uα and Sα
Uα= (e.g., Uα= α - Sα).

To facilitate permission assignment, we define:
Defn. 4: Secure API Permission Assignment: Each

role rp can be assigned Secure API role
permissions which represents a subset of
services in the Secure API Sα (Defn. 3)
that denote those services that can be
invoked by a user playing role rp.

To illustrate Defns. 1 and 2, let MA = CT2 and
four roles be defined: the Nurse role, which has
access to all seven tabs (see Figure 1) for a school
nurse to manage a student’s concussion incident
from its occurrence to its resolution; the Athletic
Trainer (AT) role which has access to home, list,
student, cause, and symptoms tabs (see Figure 1) to
do a limited preliminary assessment if a concussion
incident occurs at the event; the Coach role, which
has access to home, list, student and cause tabs (see
Figure 1) to report a concussion incident at an
athletic event with very limited information on the
student; and, the Parent role, which has access to
home, list, and student tabs (see Figure 1) to view
and edit his/her children’s general information (e.g.,
name, date of birth) in addition to being able to track
the current status of his/her children that have
ongoing concussions.

The access to the different screens are reflected
in the services of the Secure API from Figure 4 that
are assigned to each role. The subset of the Secure
APIs for the Nurse, Athletic Trainer (AT), Coach,
and Parent roles have the following Secure API
Permission Assignments:

 Nurse: Assigned to s17 to s25

An Intercepting API-Based Access Control Approach for Mobile Applications

141

 AT: Assigned to s18, s22, and 24
 Coach: Assigned to s18 and s22
 Parent: Assigned to s19

Notice each of the roles has been assigned a
subset of the Secure API from Figure 4 by referring
to the unique IDs assigned to each service. In
addition, note that we are only assigning a subset of
the services s17 to s25 to the four roles. These are
the Secure services whose HTTP method is POST;
we are assuming that all the roles have access to the
Secure services whose HTTP method is GET
(services s1 to s16 in Figure 4).

Now, for Defs. 3 and 4, there are forty-two
REST API services to retrieve, insert, and update
information. Figure 4 shows the way that the
available API services are classified in the CT2
mobile app based on the Secure and Unsecure APIs.
Basically, we have divided the services into the ones
that need to be secured (the Secure API) and the
ones that do not need to be secured (the Unsecure
API) as they do not contain confidential data.
Identifying the services beforehand will benefit us in
reducing the overhead of achieving the intercepting
API-based approach since we only need to apply
additional security policies in the intercepted
services that are part of the Secure API.

Figure 4: CT2 API Service Classification.

3.3 Interactions and Infrastructure

Figure 5 depicts the detailed interactions of the
intercepting API services approach. The top portion
of Figure 5 embodies the core RBAC model that we
are utilizing as a basis for our approach. The middle
portion of Figure 5 represents, at a high level, the

various steps and the associated process that needs
to be performed in order to authorize a user playing
a role to manage certain fields of a mobile
application. Note that a user’s role has been set
administratively. The steps from the user’s
perspective from left to right are: log in to his/her
mobile app account; for successful login, extract the
user’s role that is part of the login credentials; store
the extracted user role in a secure access token in
order to use it in future API services; utilize the
mobile app which results in multiple mobile app API
calls and are intercepted (data processing step in
Figure 5); and, the intercepted API service interacts
with the RBAC permissions and policies to enforce
the defined security before calling the original
mobile app API service. This final step involves
each role having a specific set of API permissions
(see Defn. 4 in Section 3.2) as a subset of the Secure
API (see Defn. 3 in Section 3.2).

There are two possible requests that can occur as
an end result of the interactions in the middle portion
of Figure 5. In the insert/update/delete request (via
an intercepting mobile app API service in the upper
portion of the RBAC API rounded square), the
request will be intercepted to perform the RBAC
checks against the Secure API and Secure
Permissions for that role, and depending on the
response, the action will either get done (the original
mobile app API service is allowed) or not. In the
retrieve request the user is trying to retrieve data (via
an intercepting mobile app API service in the lower
portion of the RBAC API rounded square), the data
source will perform this action but the mobile app
API is intercepted to allow RBAC checks to be
performed to verify whether the requested service is
in the Secure API for that user. This will allow the
intercepted API service to determine if the user has
access to all/some/none parts of the data with the
resulting original API service returning data
(all/some case) or null/error message (none case). In
both types of requests, the security policies utilized
to perform the RBAC checks in the intercepting API
service that involves checking the permissions to the
Secure API are stored in the database in Figure 6.

The primary changes to support the intercepting
API services approach are made in the backend of
the mobile app (server-side – bottom portion of
Figure 2) and include the addition of RBAC security
policies on the permitted subset of Secure API by
role, in a permission database to create the mapping
from the original mobile app API services to the
corresponding new intercepting API services. Figure
6 shows the three database tables that need to be
added in order to realize the RBAC security policies

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

142

on the server side: the roles table that contains the
list of available roles; the api_calls table that
contains the list of the API service calls that are
available along with an id for each one of these; and,
the api_calls_map_access table that defines whether
a role has permission to a specific API service call
or not. To support these tables, the role_id foreign
key has been added to the existing user_accounts
table in order to reference and link the user to a role.
Note that there are two new additional tables that are
placed in the database as well (api_calls_parameters
and http_methods tables) nevertheless, these are not
part of the security policy but hold part of the
content that could be utilized to generate the
intercepting code. More details about both of these
tables are discussed in Section 3.4.

Figure 5: Interactions of Intercepting API Calls with
RBAC Model as Base.

Figure 6: Security Policy Tables in the Database.

The database tables as given in Figure 6 provide
the infrastructure that is needed to link the original
mobile app API service to its corresponding new
intercepting API counterpart. Each new intercepting
API service has the same signature (same address
and parameter) as its original mobile counterpart, so
that the intercepting API service can substitute for
the original API of the mobile app to allow the
aforementioned security checks for retrieve and
insert/update/delete requests. As a result, the
intercepting API services effectively wrap the
original mobile app API services. The mobile app
now seamlessly invokes the intercepting API
services. These intercepting API services contain the
appropriate RBAC security checks on the subset of
the Secure API by role, adding a layer of security to
enforce the policies. The renamed mobile app API
services will be invoked based on the outcomes of
the security checks. The end result is that the mobile
app will appear differently based on the user/role
combination, to limit information that is delivered
(retrieve request) or that impacts the data that is
stored (insert/update/delete requests).

3.4 Algorithm Generation

The intercepting API-based approach utilizes an
algorithm to automatically generate the intercepting
code. In order to achieve this, we need to create a
file that contains the same API services as the
original mobile app API via the generate function
RBAC_API_Generator (depicted as a pseudocode in
Figure 7) which has a parameter that contains an
array of all the API services available in the mobile
app (line 1 of Figure 7). The API services reside in
the api_calls table in Figure 6, which also contains
the respective HTTP method (e.g., GET, POST)
from both the Secure and Unsecure APIs. Note the
generation of the Unsecure API services is trivial
since they simply pass through from the new
intercepting services to the original API services
without any required security checks.

Figure 7: General Idea of Code for Generating the Body of
an Access Control Service.

For each of the API services in the array, we
obtain the parameters (if any), which are stored in

An Intercepting API-Based Access Control Approach for Mobile Applications

143

the api_calls_parameters table in Figure 6, and store
these in an array (line 5 of Figure 7). Once we obtain
the parameters of the API service that is being
evaluated, we can generate the heading of the
intercepting API call function by using the current
API service as well as its parameters (if any) (line 6
of Figure 7). After generating the heading for the
intercepting API call function, we then generate the
body of the API service, which contains the security
policies (i.e., the security permission to a subset of
the Secure API by role) for that specific service and
calls the original mobile app API service if the user
has access to it (line 9 of Figure 7). The resulting
heading and body of the current API service will be
stored in an array (line 11 of Figure 7). Once all of
the intercepting services have been created, we
traverse the array in which they are stored in order to
generate the intercepting file (line 13 of Figure 7).
This approach was achieved with the assumption
that the API we want to intercept was created with
Slim (Slim, 2015), which is a PHP micro framework
that allows people to write web applications as well
as APIs. Therefore, we consider that our approach is
useful for those mobile applications/web
applications that contain an API developed with a
PHP-based framework.

4 PROOF-OF-CONCEPT AND
LESSONS LEARNED

This section presents the proof-of-concept
demonstration of the intercepting API-based
approach reviewed in Section 3 coupled with lessons
learned. Section 4.1 explores the usage of the
intercepting API-based approach on the Connecticut
Concussion Tracker (CT2) Android mHealth
application, database, and server. Section 4.2
examines lessons learned including the limitations
found when implementing our approach and an
alternate proposed approach to address them.

4.1 Implementation

Programmatically, we have source code for the
Android version of the CT2 app and a REST API
that accesses the CT2 MySQL database. The
realization of the intercepting API-based approach is
achieved without any modification to the mobile app
UI and is intended to allow fine-grained access
control on the information that is displayable and/or
storable of the authorized tabs for each user/role
combination via controlling access to the services of

the Secure API on a role-by-role basis. There is a
very clear mapping from the process described in the
previous section and the accompanying figures to its
realization in CT2. The database in CT2 was
augmented with a table that contains a list of all the
API calls available along with a call_id (similar to
the api_calls table shown in Figure 6), and a table
that contains the security policies that determine
which calls the roles have access to (similar to the
api_calls_map_access table shown in Figure 6).
Given these database changes, we then take the
original CT2 REST API calls and rename these using
an analogous process to the one shown in Figure 3.
Afterwards, a set of new CT2 intercepting REST API
calls were generated using the algorithm in Figure 7
that will perform a series of RBAC checks based on
the services of the Secure API assigned to each role,
and if successful, invoke the corresponding renamed
original CT2 REST API calls.

From a process perspective, the steps in CT2
follow the middle portion of Figure 5. The user logs
on to the CT2 mHealth app and a combination of
his/her user id with his/her role is stored in a JSON
Web Token (JWT) (JWT, 2015) in the session in
order to support the class that manages the API
services as presented and discussed in Section 3 and
in Figure 4 for roles, the Secure API, and
Permissions (Defns. 2, 3, and 4, respectively).
Figure 8 illustrates the impact of the intercepting
API services (error message) and associated process
for a user with the role of Coach which has access to
only the home, list, student, and cause tabs. This role
can add basic information on the ‘Student’ tab, can
add information in the ‘Cause’ tab and, after adding
the information, the user can view but not edit. The
error in Figure 8 indicates that a user with the Coach
role tried to update information on the Cause tab.

Figure 8: CT2 mobile app screen.

The original mobile app CT2 API services support

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

144

the insert of information in the database and the
intercepting API service in this case allows that first
save to occur. At a later point in time, if the user
with the role of Coach attempts to edit and perform
another save, the intercepting API service in this
case performs the RBAC check that does not allow
the edit. As a result, the intercepting API service
alerts that he/she does not have permission to
perform that action. This checking process consults
the Secure API Permission Assignments of the
Secure API by role, to verify if the Coach role has
access to the desired action. Specifically, for the
Coach role, all of the POST services (s17 to s25) are
intercepting services and as a result each call
performs an RBAC check. If the service is s18 or
s22, the RBAC check succeeds and the
corresponding original API method is called.
Otherwise, if the service is s17, 19, 20, 21, 23, 24, or
25, then the RBAC check fails and the original API
method is not called. The other tabs of CT2,
‘Symptoms’, ‘Follow-Up’ and ‘Return’, are still
visible within the app. However, when a user with
the Coach role attempts to access one of these tabs,
the app will try to obtain the pertinent data via the
former original CT2 API service that has been
replaced by a new CT2 intercepting API service that
checks for permissions and returns that the specified
role does not have permission to retrieve the data for
those screens. Attempting to access other tabs with
services other than those authorized for the Coach
role (s18 and s22) results in a failed RBAC check
that denies the action.

To evaluate if the approach affected the
performance of the mobile app in any significant
way, we tracked the time the app took to perform
services with and without interception. Table 1
contains the time average (in seconds) the mobile
app took to process the services requested by the
clients without the intercepting API-based approach
versus the time it took to process the services
requested by the clients with interception. For this
evaluation, we assumed multiple users were utilizing
the mobile app simultaneously and that each of these
users made one request only, therefore, we emulated
the calling of 25, 50, 100, 250 services concurrently
to determine the time variation. By looking at the
results in Table 1, we observe that the time taken to
process services in their original state is smaller than
the time elapsed when the services are processed
with the use of our approach. Nevertheless, we
consider that even though adding time to process
services is not desirable, our intercepting API-based
approach is still quick since it takes only a matter of
microseconds to analyze the service requested by a

user and return a secured response. Therefore, in
terms of overhead, the mobile app did not take a
significant amount of additional time to execute a
user’s request.

Table 1: Original vs. Intercepting API service
Performance Evaluation (in seconds).

#of services 25 50 100 250

Original 3.34x10-6 3.41x10-6 3.54x10-6 3.98x10-6

Intercepting
API

1.08x10-4 1.11x10-4 1.18x10-4 1.19x10-4

4.2 Limitations and Discussion

The intercepting API-based approach performs
security checks to determine whether the API
service can occur based on the user and his/her role
that has been given permission to call a subset of the
services of the Secure API, thereby controlling what
is returned to the user. The approach as described in
this paper essentially creates a replica of the API that
the mobile app uses so that the mobile app utilizes
our intercepting API which can perform security
checks and then pass the call through to the original
mobile app API if the security permissions are met
(i.e., the role is authorized to the service of the
Secure API attempting to be invoked). This was
accomplished by renaming the calls to the services
of the original mobile app API. There are two
possible issues with this approach. First, we may not
have access to the mobile app API. Second, even if
we do, then the renaming would require changes to
the service names of the original mobile app API. As
a result, we believe that it is possible to realize a
solution to eliminate these two issues by proposing
an intercepting server that does not modify the
original mobile app API file but contains the original
service calls that the mobile app has access to and
then forward each call from the intercepting API
service of the same name to the original API service.

Figure 9: Alternate Process for the Intercepting API-Based
Approach.

Figure 9 illustrates an alternate process for the
Intercepting API-based approach that establishes an
intercepting server that has an API that will mimic
what the mobile app is expecting but is our

An Intercepting API-Based Access Control Approach for Mobile Applications

145

intercepting API (second box from the left in Figure
9). The intercepting API server must also be able to
mimic multiple APIs since the mobile app may
interact with several of these (depicted in third box
from the left in Figure 9). The original and
intercepting servers would need to be run on
different ports if on the same host with the
intercepting server being accessible publicly while
the original might only be accessible locally. The
intercepting server(s) could forward any allowed
calls to the original server(s) and filter the results as
needed before returning to the client. This is
facilitated by using the login credentials (user/role
combination) to determine the security level in each
of the API Services. Currently, we manage to pass
on the user id and the user’s role between calls by
storing these server-side in a JSON Web Token
(JWT) (JWT, 2015). This is done to secure the
user’s data and to verify that the user has access to
the action he/she requested by utilizing his/her role.

5 RELATED WORK

There are many efforts that propose access control
mechanisms to secure mobile applications by
limiting the permissions and resources a mobile app
can access in different areas of the mobile
device/app. In this section, we discuss several
existing proposed approaches that attempt to apply
access control mechanisms on different locations on
a mobile device and, we explain the way our
approach compares and contrasts.

The first area of related work involves sensor
management on smartphones that is commonly
addressed by applying access control mechanisms to
the sensors of a mobile device so that mobile apps
obtain fine-grained permissions. This facilitates the
managing of sensor data in mobile apps (e.g., user’s
location, use of Bluetooth) (Cappos et al., 2014; Xu
and Zhu, 2015). BlurSense (Cappos et al., 2014) and
SemaDroid (Xu and Zhu, 2015) allow users to
define and add privacy filters to sensor data, through
the means of a user interface, that is being used on
their mobile applications. In contrast to these efforts,
our work presented in this paper focuses on API
access control management for the API services that
are utilized within a mobile app to populate data in
the app and to add/edit data and store it in a data
source. In other words, instead of focusing on
modifying the operating system to filter sensor data
we modify the backend of a specific mobile app and
filter the data that a user can have access to
according to his/her role, which can include sensor

data as well if there was an API service included in
the intercepted API that managed this.

The second area of related work involves
permission control in Android in which access
control can be applied on the mobile device itself.
There are many existing approaches (Beresford et
al., 2011; Benats et al., 2011; Wang et al., 2014; Jin
et al., 2015; Hao et al., 2013; Backes et al., 2014)
that focus on applying fine-grained access control
policies to mobile devices that contain Android as
their operating system. This is due to the fact that
Android contains a coarse-grained access control
mechanism when it comes to allowing permissions
in mobile applications. In other words, in order for a
user to install a mobile app he/she needs to accept all
of the permissions that the app requires. This may
disregard the fact that some permissions may not be
necessary for the app to function and that some of
the permissions may not make sense for app that is
being downloaded and could result in using the
allowed component for malicious purposes (e.g., a
flashlight app tells user it needs permission to get the
user’s location). Adding fine-grained access control
to the APIs that Android uses for the device and
apps to function properly has been addressed by:
mocking the values that an app receives in order to
function (Beresford et al., 2011) (e.g., mocking
latitude and longitude coordinates); extending the
security policies of the mobile device (Benats et al.,
2011; Wang et al., 2014; Jin et al., 2015); by
rewriting the bytecode of the mobile device (Hao et
al., 2013); and by adding security modules to the
mobile device (Backes et al., 2014). In contrast to
this effort, our work presented in this paper focuses
on applying access control mechanisms to the APIs
that are not part of the mobile system itself. In
addition, most of these works are specific for
Android OS/API while ours can be implemented for
any type of application (even though we focus on the
mobile setting) since our access control approach is
enforced server-side.

The third area of related work involves role-
based access control and extensions that expand
RBAC with context-aware techniques in order to
provide finer-grained access control security policies
to those systems that contain highly sensitive data.
One effort does this by proposing an RBAC model
with a spatiotemporal extension for web applications
(Aich et al., 2009) and another effort proposes a
similar approach but for mobile applications
(Abdunabi et al., 2013). The proposed access control
system made for web applications (Aich et al., 2009)
can be applied to an existing system as a dll
component. Another approach proposes a dynamic

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

146

RBAC approach for Android devices (Rohrer et al.,
2013). That approach focuses on modifying the
Android framework to provide a uniform security
policy to mitigate security risks in mobile devices
that are utilized by users who are part of an
enterprise. Finally, an effort (Fadhel et al., 2016)
proposed a model that extends RBAC to generate
RBAC conceptual policies. Nevertheless, the
aforementioned effort does not provide details of
which specific application domain(s) the approach
could support. Our proposed framework could easily
be extended to support other types of access control,
can be applied to mobile web applications and, it is
not domain-specific; this contrasts to discussed
related work.

6 CONCLUSION & ONGOING
WORK

This paper presented and discussed an intercepting
API-based access control approach for mobile
applications achieved via role-based access control
defined and enforced on services. Specifically, the
work in this paper demonstrated the way that RBAC
can be incorporated into an intercepting API that
wraps the original mobile app API in order to
manage the data displayed in a mobile application.
To begin the presentation, Section 2 reviewed
background on RBAC and APIs, motivated the
usage of RBAC in mobile applications, and
described the Connecticut Concussion Tracker (CT2)
mHealth app. Using that as a basis, Section 3
detailed our proposed intercepting API-based
approach, which included the transition from the
original mobile app API to a renamed mobile app
API that is then wrapped with the intercepting API.
To demonstrate the feasibility and utility of our
work, Section 4 explained the realization of the
intercepting API-based approach into the CT2
mobile application and discussed a way to address
the limitations of the proposed approach. Lastly,
Section 5 reviewed and contrasted related work to
our effort.

As part of our ongoing work, we are researching
on the way to incorporate RBAC, MAC, and DAC
into the Fast Interoperable Healthcare Resources
(FHIR) specification and infrastructure (FHIR,
2016) to facilitate information exchange between a
mHealth app and multiple EHRs and health
information technology systems. So far, we have
published a paper (Rivera Sánchez et al., 2017) with
our findings on incorporating RBAC in FHIR

through the means of the HAPI FHIR reference
implementation (HAPI FHIR, 2014). Our solution
utilizes unique capabilities in HAPI FHIR that allow
our code to intercept the FHIR server API service
calls so that the service calls that the mHealth app
makes against the RESTful API service calls are
checked against defined RBAC policies. We believe
that this in turn will aid us in the development of a
general approach for securing data that is managed
through the means of APIs.

REFERENCES

Abdunabi, R., Ray, I., & France, R., 2013. Specification
and analysis of access control policies for mobile
applications. 18th ACM Symposium on Access
Control.

Models and Technologies (SACMAT '13). ACM, pp. 173–
184.

Aich, S., Mondal, S., Sural, S., & Majumdar, A. K., 2009.
Role Based Access Control with Spatiotemporal
Context for Mobile Applications. Transactions on
Computational Science IV: Special Issue on Security
in Computing.

Backes, M., Bugiel, S., Gerling, S., & von Styp-
Rekowsky, P., 2014. Android Security Framework:
Extensible multi-layered access control on Android.
30th Annual Computer Security Applications.

Conference, pp. 46-55.
Beal, V., 2014. API - application program interface.

[Online] Available.
at: http://www.webopedia.com/TERM/A/API.html.
Benats, G. et al., 2011. PrimAndroid: privacy policy

modelling and analysis for android applications. In
Symposium on Policies for Distributed Systems and
Networks (POLICY ‘11). IEEE.

Beresford, A., Rice, A., Skehin, N., & Sohan, R., 2011.
MockDroid: trading privacy for application
functionality on smartphones. 12th Workshop on
Mobile Computing Systems and Applications. Phoenix,
Arizona.

Cappos, J., Wang, R., Yang, Y. & Zhuang, Y., 2014.
Blursense: Dynamic fine-grained access control for
smartphone privacy. [Online] Available at:
DOI=10.1109/SAS.2014.6798970.

Cobb, M., 2014. API security: How to ensure secure API
use in the enterprise. [Online] Available at:
http://searchsecurity.techtarget.com/tip/API-security-
How-to-ensure-secure-API-use-in-the-enterprise.

Collet, S., 2015. API security leaves apps vulnerable: 5
ways to plug the leaks. [Online] Available at:
http://www.csoonline.com/article/2956367/mobile-
security/api-security-leaves-apps-vulnerable-5-ways-
to-plug-the-leaks.html.

Connecticut General Assembly, 2015. Substitute for
Raised H.B. No. 6722. [Online] Available at:
https://www.cga.ct.gov/asp/CGABillStatus/CGAbillst

An Intercepting API-Based Access Control Approach for Mobile Applications

147

atus.asp?which_year=2015&selBillType=Bill&bill_nu
m=HB6722.

Dellinger, A., 2015. This Instagram app may have stolen
over 500,000 usernames and passwords. [Online]
Available at: http://www.dailydot.com/technology.

/instaagent-instagram-app-malware-ios-android/
Developer Program, 2012. Benefits of APIs. [Online]

Available at: http://18f.github.io/API-All-the-
X/pages/benefits_of_apis.

Facebook, 2014. Facebook Graph API. [Online]
Available at:https://developers.facebook.com/docs/

graph-api.
Fadhel, A., Bianculli, D., Briand, L. & Hourte, B., 2016. A

Model-driven Approach to Representing and Checking
RBAC Contextual Policies. CODASPY 2016. ACM,
pp. 243–253.

Fernández-Alemán, J., Señor, I., Lozoya, P. & Toval, A.,
2013. Security and privacy in electronic health
records: A systematic literature review. Journal of
Biomedical Informatics, 46(3), pp. 541-562.

Ferraiolo, D. & Kuhn, R., 1992. Role-Based Access
Control. NIST-NSA National (USA) Computer Security
Conference, pp. 554-563.

Ferraiolo, D. et al., 2001. Proposed NIST standard for
role-based access control. ACM Transactions on
Information and System Security (TISSEC), Volume 4,
pp. 224-274.

FHIR, 2016. Welcome to FHIR. [Online]
Available at: https://www.hl7.org/fhir/index.html.

Flanders, D., Ramsey, M., & McGregor, A., 2012. The
advantage of APIs. [Online]
Available at: https://www.jisc.ac.uk/guides/the-
advantage-of-apis.

Hao, H., Singh, V. & Du, W., 2013. On the effectiveness
of API-level access control using bytecode rewriting
in Android. 8th ACM SIGSAC symposium on
Information, computer and communications security.
Hangzhou, China.

HAPI FHIR, 2014. HAPI. [Online] Available at:
http://hapifhir.io/

Instagram, 2010. Instagram. [Online] Available at:
https://www.instagram.com/

Jin, X., Wang, L., Luo, T. & Du, W., 2015. Fine-Grained
Access Control for HTML5-Based Mobile
Applications in Android. 16th Information Security
Conference (ISC), pp. 309-318.

JWT, 2015. Introduction to JSON Web Tokens. [Online]
Available at: https://jwt.io/introduction/

Larson, S., 2015. Instagram restricts API following
password breach, will review all apps going forward.
[Online] Available at: http://www.dailydot.com/

technology/instagram-api-restrictions/
Lella, A., Lipsman, A. & Martin, B., 2015. The 2015

Mobile App Report. [Online] Available at:
https://www.comscore.com/Insights/Presentations-
and-Whitepapers/2015/The-2015-US-Mobile-App-
Report.

Microsoft Corporation, 2008. Mobile Application
Architecture Guide. [Online] Available at:
http://apparch.codeplex.com/releases/view/19798.

REST API Tutorial, 2012. Learn REST: A RESTful
Tutorial. [Online] Available at: http://
www.restapitutorial.com/

Rindfleisch, T., 1997. Privacy, Information Technology,
and Health Care. Communications of the ACM, 40(8),
pp. 93-100.

Rivera Sánchez, Y. K., Demurjian, S.A., & Baihan, M.,
2017. An Access Control Approach for FHIR. 5th
IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (IEEE Mobile
Cloud 2017).

Rohrer, F., Zhang, Y., Chitkushev, L. & Zlateva, T., 2013.
DR BACA: dynamic role based access control for
Android. 29th Annual Computer Security Applications
Conference. New Orleans, Louisiana, USA.

Rouse, M., 2006. HTTP (Hypertext Transfer Protocol).
[Online] Available at: http://searchwindevelopment.
techtarget.com/definition/HTTP.

Sandhu, R. & Samarati, P., 1994. Access Control:
Principles and Practice. Communications Magazine,
32(9), pp. 40-48.

Slim, 2015. Slim a micro framework for PHP. [Online]
Available at: https://www.slimframework.com/

Snapchat, 2011. Snapchat. [Online] Available at:
https://www.snapchat.com/

Snapchat, 2013. Finding Friends with Phone Numbers.
[Online] Available at: http://blog.snapchat.com/post/
71353347590/finding- friends-with-phone-numbers.

Wang, Y. et al., 2014. Compac: enforce component-level
access control in android. 4th ACM conference on
Data and application security and privacy. San
Antonio, Texas, USA.

West, A., 2015. 5 Roles of Role Based Access Control.
[Online] Available at: https://www.itouchvision.com/

5-roles-of-role-based-access-control-the-software-
security-guard/

Xu, Z. & Zhu, S., 2015. Semadroid: A privacy-aware
sensor management framework for smartphones. 5th
ACM Conference on Data and Application Security
and Privacy. ACM, pp. 61-72.

Zeman, E., 2015. Snapchat Lays Down The Law On
Third-Party Apps. [Online] Available at:
http://www.programmableweb.com/news/snapchat-
lays-down-law-third-party-apps/2015/04/07.

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

148

