et al., 2016).
REFERENCES
Abadi, D. J., Carney, D., C¸ etintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and
Zdonik, S. (2003). Aurora: a new model and ar-
chitecture for data stream management. The VLDB
JournalThe International Journal on Very Large Data
Bases, 12(2):120–139.
Aniello, L., Baldoni, R., and Querzoni, L. (2013). Adaptive
online scheduling in storm. In Proceedings of the 7th
ACM international conference on Distributed event-
based systems, pages 207–218. ACM.
Cardellini, V., Grassi, V., Lo Presti, F., and Nardelli, M.
(2015). Distributed qos-aware scheduling in storm. In
Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems, pages 344–347.
ACM.
Chatzistergiou, A. and Viglas, S. D. (2014). Fast heuristics
for near-optimal task allocation in data stream pro-
cessing over clusters. In Proceedings of the 23rd ACM
International Conference on Conference on Informa-
tion and Knowledge Management, pages 1579–1588.
ACM.
Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M.,
Elmeleegy, K., and Sears, R. (2010). Mapreduce on-
line. In Nsdi, volume 10, page 20.
Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.
Eidenbenz, R. and Locher, T. (2016). Task allocation
for distributed stream processing. arXiv preprint
arXiv:1601.06060.
Gedik, B., Schneider, S., Hirzel, M., and Wu, K.-L. (2014).
Elastic scaling for data stream processing. IEEE
Transactions on Parallel and Distributed Systems,
25(6):1447–1463.
Heinze, T., Aniello, L., Querzoni, L., and Jerzak, Z.
(2014a). Cloud-based data stream processing. In
Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems, pages 238–245.
ACM.
Heinze, T., Jerzak, Z., Hackenbroich, G., and Fetzer, C.
(2014b). Latency-aware elastic scaling for distributed
data stream processing systems. In Proceedings of
the 8th ACM International Conference on Distributed
Event-Based Systems, pages 13–22. ACM.
Heinze, T., Pappalardo, V., Jerzak, Z., and Fetzer, C.
(2014c). Auto-scaling techniques for elastic data
stream processing. In Data Engineering Workshops
(ICDEW), 2014 IEEE 30th International Conference
on, pages 296–302. IEEE.
Heinze, T., Roediger, L., Meister, A., Ji, Y., Jerzak, Z., and
Fetzer, C. (2015). Online parameter optimization for
elastic data stream processing. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, pages
276–287. ACM.
Hu, H., Wen, Y., Chua, T.-S., and Li, X. (2014). Toward
scalable systems for big data analytics: A technology
tutorial. IEEE Access, 2:652–687.
Jamshidi, P. and Casale, G. (2016). An uncertainty-aware
approach to optimal configuration of stream process-
ing systems. In Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MAS-
COTS), 2016 IEEE 24th International Symposium on,
pages 39–48. IEEE.
Kingman, J. (1961). The single server queue in heavy traf-
fic. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 57, pages 902–904.
Cambridge Univ Press.
Kleppmann, M. and Kreps, J. (2015). Kafka, samza and
the unix philosophy of distributed data. IEEE Data
Engineering Bulletin.
Krempl, G.,
ˇ
Zliobaite, I., Brzezi
´
nski, D., H
¨
ullermeier, E.,
Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi,
S., Spiliopoulou, M., et al. (2014). Open challenges
for data stream mining research. ACM SIGKDD ex-
plorations newsletter, 16(1):1–10.
Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg,
C., Mittal, S., Patel, J. M., Ramasamy, K., and Taneja,
S. (2015). Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
239–250. ACM.
Lohrmann, B., Janacik, P., and Kao, O. (2015). Elas-
tic stream processing with latency guarantees. In
Distributed Computing Systems (ICDCS), 2015 IEEE
35th International Conference on, pages 399–410.
IEEE.
NeCTAR (2016). The National e-Research Collaboration
Tools and Resources project. https://nectar.org.
au/.
Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010).
S4: Distributed stream computing platform. In 2010
IEEE International Conference on Data Mining Work-
shops, pages 170–177. IEEE.
Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M.,
Welsh, M., and Seltzer, M. (2006). Network-aware
operator placement for stream-processing systems. In
22nd International Conference on Data Engineering
(ICDE’06), pages 49–49. IEEE.
Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Pa-
tel, J. M., Kulkarni, S., Jackson, J., Gade, K., Fu, M.,
Donham, J., et al. (2014). Storm@ twitter. In Proceed-
ings of the 2014 ACM SIGMOD international confer-
ence on Management of data, pages 147–156. ACM.
Xu, L., Peng, B., and Gupta, I. (2016). Stela: Enabling
stream processing systems to scale-in and scale-out
on-demand. In IEEE International Conference on
Cloud Engineering (IC2E).
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: cluster computing with
working sets. HotCloud, 10:10–10.
Zikopoulos, P., Eaton, C., et al. (2011). Understanding
big data: Analytics for enterprise class hadoop and
streaming data. McGraw-Hill Osborne Media.
CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science
582