The consistency for arousal is high – in 13 out of
15 participants exceeds 90%, only 2 have the
consistency above 80%. Valence inconsistency is
significantly higher – 90% threshold is exceeded
only in one case, while another two are above 80%.
For majority of participants the consistency of
valence recognition from the two camera location is
lower than 50%, and even for one is reported as 0.
Difference of valence is statistically significant,
which was confirmed by paired t-test with 95%
confidence interval.
5 SUMMARY OF RESULTS
The presented study revealed the following results:
availability of camera recordings in e-learning
environment is acceptable;
upper camera availability is higher than for the
location below the monitor;
when one camera recording is unavailable,
recording from the second one is usually
available, making an advantage of using two;
when using two cameras the inconsistency of
emotion recognition is relatively high and for
majority of the participants below the acceptable
threshold;
lower camera tends to overestimate surprise,
while upper one – anger.
All automatic emotion recognition algorithms are
susceptible to some disturbances and facial
expression analysis is not an exception – suffers
from face oval partial cover, location of the camera,
insufficient or uneven illumination. When compared
to a questionnaire (self-report), all automatic
emotion recognition methods are more independent
on human will and therefore might be perceived as a
more reliable source of information on affective
state of a user, however inconsistency rate is
alarming.
The study results permit to draw a conclusion
that automatic emotion recognition from facial
expressions should be applied in e-learning
processes tests with caution, perhaps being
confirmed by another observation channel.
The authors acknowledge that this study and
analysis has some limitations. The main limitations
of the study include: limited number of participants
and arbitrarily chosen metrics and thresholds. More
case studies as well as additional experiments that
practically would validate the findings are planned
in the future research.
There are also issues that were not addressed and
evaluated within this study, i.e. consistency with
other emotion recognition channels and perhaps self-
report. Those factors require a much deeper
experimental project.
6 CONCLUSIONS
There is a lot of evidence that human emotions
influence interactions with computers and software
products. No doubt that educational processes
supported with technologies are under that influence
Table 2: Reliability metrics.
P01 43,5
0,00 (0,02) -0,02 (0,03) 0,02
100,00
0,25 (0,05) 0,23 (0,06) 0,02
100,00
P03 36,6
-0,46 (0,21) -0,18 (0,14) 0,28
38,46
0,34 (0,05) 0,30 (0,04) 0,04
100,00
P04 19,9
-0,33 (0,20) -0,78 (0,17) 0,45
11,22
0,33 (0,08) 0,32 (0,08) 0,01
100,00
P05 17,5
-0,50 (0,18) -0,19 (0,15) 0,31
30,43
0,27 (0,07) 0,34 (0,05) 0,07
94,20
P06 50,2
-0,10 (0,14) -0,13 (0,12) 0,03
89,47
0,30 (0,03) 0,23 (0,08) 0,07
91,23
P07 20,9
-0,86 (0,07) -0,29 (0,10) 0,57
1,69
0,28 (0,05) 0,30 (0,04) 0,02
98,31
P08 7,4
-0,70 (0,19) -0,11 (0,16) 0,59
8,33
0,36 (0,06) 0,35 (0,07) 0,01
100,00
P09 26,9
-0,20 (0,14) -0,53 (0,24) 0,34
23,81
0,35 (0,06) 0,36 (0,08) 0,01
80,95
P10 9,6
-0,52 (0,25) -0,20 (0,18) 0,31
28,85
0,30 (0,09) 0,32 (0,05) 0,01
92,31
P11 5,8
-0,75 (0,10) -0,01 (0,01) 0,75
0,00
0,29 (0,03) 0,30 (0,03) 0,01
100,00
P12 8,4
-0,02 (0,03) -0,08 (0,13) 0,05
89,47
0,28 (0,03) 0,24 (0,05) 0,04
100,00
P14 12,4
-0,56 (0,21) -0,27 (0,19) 0,29
35,82
0,41 (0,0) 0,33 (0,08) 0,08
85,07
P15 17,5
-0,83 (0,14) -0,17 (0,12) 0,66
2,74
0,28 (0,04) 0,33 (0,05) 0,04
100,00
P16 44,3
-0,92 (0,09) -0,50 (0,16) 0,42
5,95
0,29 (0,06) 0,34 (0,05) 0,04
97,62
P17 37,0
-0,65 (0,14) -0,41 (0,13) 0,24
33,33
0,35 (0,04) 0,36 (0,05) 0,01
100,00
Diff REL02
Arousal
Diff REL02
Valence
Lower Cam.
Mean ( SD)
Participant REL01
Mean ( SD) Mean ( SD) Mean ( SD)
Upper Cam. Lower Cam. Upper Cam.