us to operate in a proactive way, by also reducing the
cold-start problem.
Even the problems related to the data heterogene-
ity are reduced thanks to the adoption of a more sta-
ble model (based on the frequency components) able
to recognize peculiar patterns in the transaction fea-
tures, regardless of the value assumed by them.
Future work would be oriented to the implementa-
tion of the proposed approach in a real-world context,
by comparing its performance to those of the most
widely used state-of-the-art approaches.
ACKNOWLEDGEMENTS
This research is partially funded by Regione Sardegna
under project “Next generation Open Mobile Apps
Development” (NOMAD), “Pacchetti Integrati di
Agevolazione” (PIA) - Industria Artigianato e Servizi
- Annualit
`
a 2013.
REFERENCES
Assis, C., Pereira, A. M., de Arruda Pereira, M., and Car-
rano, E. G. (2010). Using genetic programming to
detect fraud in electronic transactions. In Prazeres,
C. V. S., Sampaio, P. N. M., Santanch
`
e, A., Santos, C.
A. S., and Goularte, R., editors, A Comprehensive Sur-
vey of Data Mining-based Fraud Detection Research,
volume abs/1009.6119, pages 337–340.
Attenberg, J. and Provost, F. J. (2010). Inactive learn-
ing?: difficulties employing active learning in prac-
tice. SIGKDD Explorations, 12(2):36–41.
Bolton, R. J. and Hand, D. J. (2002). Statistical fraud de-
tection: A review. Statistical Science, pages 235–249.
Brown, I. and Mues, C. (2012). An experimental compari-
son of classification algorithms for imbalanced credit
scoring data sets. Expert Syst. Appl., 39(3):3446–
3453.
Chatterjee, A. and Segev, A. (1991). Data manipulation
in heterogeneous databases. ACM SIGMOD Record,
20(4):64–68.
Donmez, P., Carbonell, J. G., and Bennett, P. N. (2007).
Dual strategy active learning. In ECML, volume 4701
of Lecture Notes in Computer Science, pages 116–
127. Springer.
Duhamel, P. and Vetterli, M. (1990). Fast fourier trans-
forms: a tutorial review and a state of the art. Signal
processing, 19(4):259–299.
Gao, J., Fan, W., Han, J., and Yu, P. S. (2007). A general
framework for mining concept-drifting data streams
with skewed distributions. In Proceedings of the Sev-
enth SIAM International Conference on Data Min-
ing, April 26-28, 2007, Minneapolis, Minnesota, USA,
pages 3–14. SIAM.
Garibotto, G., Murrieri, P., Capra, A., Muro, S. D.,
Petillo, U., Flammini, F., Esposito, M., Pragliola, C.,
Leo, G. D., Lengu, R., Mazzino, N., Paolillo, A.,
D’Urso, M., Vertucci, R., Narducci, F., Ricciardi, S.,
Casanova, A., Fenu, G., Mizio, M. D., Savastano, M.,
Capua, M. D., and Ferone, A. (2013). White paper on
industrial applications of computer vision and pattern
recognition. In ICIAP (2), volume 8157 of Lecture
Notes in Computer Science, pages 721–730. Springer.
He, H. and Garcia, E. A. (2009). Learning from imbalanced
data. IEEE Trans. Knowl. Data Eng., 21(9):1263–
1284.
Hoffman, A. J. and Tessendorf, R. E. (2005). Artificial in-
telligence based fraud agent to identify supply chain
irregularities. In Hamza, M. H., editor, IASTED In-
ternational Conference on Artificial Intelligence and
Applications, part of the 23rd Multi-Conference on
Applied Informatics, Innsbruck, Austria, February 14-
16, 2005, pages 743–750. IASTED/ACTA Press.
Holte, R. C., Acker, L., and Porter, B. W. (1989). Concept
learning and the problem of small disjuncts. In Srid-
haran, N. S., editor, Proceedings of the 11th Interna-
tional Joint Conference on Artificial Intelligence. De-
troit, MI, USA, August 1989, pages 813–818. Morgan
Kaufmann.
Japkowicz, N. and Stephen, S. (2002). The class imbal-
ance problem: A systematic study. Intell. Data Anal.,
6(5):429–449.
Lek, M., Anandarajah, B., Cerpa, N., and Jamieson, R.
(2001). Data mining prototype for detecting e-
commerce fraud. In Smithson, S., Gricar, J., Pod-
logar, M., and Avgerinou, S., editors, Proceedings of
the 9th European Conference on Information Systems,
Global Co-operation in the New Millennium, ECIS
2001, Bled, Slovenia, June 27-29, 2001, pages 160–
165.
Lenard, M. J. and Alam, P. (2005). Application of fuzzy
logic fraud detection. In Khosrow-Pour, M., editor,
Encyclopedia of Information Science and Technology
(5 Volumes), pages 135–139. Idea Group.
Phua, C., Lee, V. C. S., Smith-Miles, K., and Gayler, R. W.
(2010). A comprehensive survey of data mining-based
fraud detection research. CoRR, abs/1009.6119.
Pozzolo, A. D., Caelen, O., Borgne, Y. L., Waterschoot, S.,
and Bontempi, G. (2014). Learned lessons in credit
card fraud detection from a practitioner perspective.
Expert Syst. Appl., 41(10):4915–4928.
Wang, H., Fan, W., Yu, P. S., and Han, J. (2003). Mining
concept-drifting data streams using ensemble classi-
fiers. In Getoor, L., Senator, T. E., Domingos, P. M.,
and Faloutsos, C., editors, Proceedings of the Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Washington, DC,
USA, August 24 - 27, 2003, pages 226–235. ACM.
Whiting, D. G., Hansen, J. V., McDonald, J. B., Albrecht,
C. C., and Albrecht, W. S. (2012). Machine learning
methods for detecting patterns of management fraud.
Computational Intelligence, 28(4):505–527.
A Frequency-domain-based Pattern Mining for Credit Card Fraud Detection
391