ACKNOWLEDGEMENTS
The authors thank to CNPq and CAPES for financial
support.
REFERENCES
Chawla, P., Chana, I., and Rana, A. (2015). A novel strategy
for automatic test data generation using soft compu-
ting technique. Frontiers of Comp.Science, 9(3):346–
363.
Colanzi, T. E., Vergilio, S. R., Gimenes, I. M. S., and Oi-
zumi, W. N. (2014). A search-based approach for soft-
ware product line design. In Proc. of SPLC 2014.
Contieri Jr, A. C., Correia, G. G., Colanzi, T. E., Gimenes,
I. M., Oliveira Jr, E. A., Ferrari, S., Masiero, P. C., and
Garcia, A. F. (2011). Extending uml components to
develop software product-line architectures: lessons
learned. In European Conference on Software Archi-
tecture, pages 130–138. Springer.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–197.
Donegan, P. M. and Masiero, P. C. (2007). Design is-
sues in a component-based software product line. In
SBCARS, pages 3–16.
F
´
ederle, E. L., Ferreira, T. N., Colanzi, T. E., and Vergilio,
S. R. (2015). OPLA-Tool: A support tool for search-
based product line architecture design. In Proc. of
the 19th International Conference on Software Pro-
duct Line, SPLC ’15, pages 370–373.
Ferrucci, F., Harman, M., Ren, J., and Sarro, F. (2013). Not
going to take this anymore: Multi-objective overtime
planning for Software Engineering projects. Procee-
dings - International Conference on Software Engi-
neering, pages 462–471.
Fraser, G., Arcuri, A., and McMinn, P. (2015). A memetic
algorithm for whole test suite generation. Journal of
Systems and Software, 103:311–327.
Gomaa, H. (2011). Software modeling and design: UML,
use cases, patterns, and software architectures. Cam-
bridge University Press.
Guizzo, G., Colanzi, T., and Vergilio, S. (2014). A pattern-
driven mutation operator for search-based product line
architecture design. In Proc. of SSBSE, pages 77–91.
Harman, M. and McMinn, P. (2010). A theoretical and em-
pirical study of search-based testing: Local, global,
and hybrid search. IEEE Trans. Soft. Eng., 36(2):226–
247.
Jeya Mala, D., Sabari Nathan, K., and Balamurugan, S.
(2013). Critical components testing using hybrid ge-
netic algorithm. SIGSOFT Softw.Eng.Notes, 38(5):1–
13.
Nunes, C., Kulesza, U., Sant’Anna, C., Nunes, I., Garcia,
A., and Lucena, C. (2009). Assessment of the design
modularity and stability of multi-agent system pro-
duct lines. Journal of Universal Computer Science,
15(11):2254–2283.
Ochoa, G., Verel, S., and Tomassini, M. (2010). First-
improvement vs. best-improvement local optima net-
works of nk landscapes. In International Conference
on Parallel Problem Solving from Nature, pages 104–
113. Springer.
OliveiraJr, E., Gimenes, I. M., Maldonado, J. C., Masiero,
P. C., and Barroca, L. (2013). Systematic evaluation
of software product line architectures. Journal of Uni-
versal Computer Science, 19:25–52.
Radziukynien
˙
e, I. and
ˇ
Zilinskas, A. (2008). Evolutionary
methods for multi-objective portfolio optimization. In
Proceedings of the World Congress on Engineering,
volume 2.
Russell, S. J. and Norvig, P. (2003). Artificial Intelligence:
A Modern Approach. Pearson Education, 2 edition.
SEI (2016). AGM.
Smith, J. and Simons, C. L. (2013). A comparison of two
memetic algorithms for software class modelling. In
Proc. of GECCO, pages 1485–1492, New York, USA.
ACM.
van der Linden, F. and Rommes, E. (2007). Software Pro-
duct Lines in Action - The Best Industrial Practice in
Product Line Engineering. Springer.
Van Veldhuizen, D. A. (1999). Multiobjective evolutionary
algorithms: classifications, analyses, and new innova-
tions. Technical report, DTIC Document.
Van Veldhuizen, D. A. and Lamont, G. B. (1998). Multiob-
jective evolutionary algorithm research: A history and
analysis. Technical report, Citeseer.
Wust, J. (2016). SDMetrics. http://www.sdmetrics.com/.
Accessed on 05/12/2016.
Yoo, S. and Harman, M. (2007). Pareto efficient multi-
objective test case selection. In Proceedings of the
2007 international symposium on Software testing
and analysis, pages 140–150. ACM.
Zeleny, M. and Cochrane, J. L. (1973). Multiple criteria
decision making. University of South Carolina Press.
Zitzler, E., Laumanns, M., Thiele, L., et al. (2001). Spea2:
Improving the strength pareto evolutionary algorithm.
In Eurogen, volume 3242, pages 95–100.
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M.,
and Da Fonseca, V. G. (2003). Performance asses-
sment of multiobjective optimizers: an analysis and
review. IEEE transactions on evolutionary computa-
tion, 7(2):117–132.
Application of Memetic Algorithms in the Search-based Product Line Architecture Design: An Exploratory Study
189