
E-Shop 
A Vertical Search Engine for Domain of Online Shopping 

Vigan Abdurrahmani, Lule Ahmedi and Korab Rrmoku 
Faculty of Electrical and Computer Engineering, University of Prishtina, Kodra e Diellit, Pristina, Kosovo 

 

Keywords: Search Engine, Web Crawler, Indexing, Search Ranking. 

Abstract: Along with general search engines which search the entire web, vertical search engines that are rather 
focused on specific domains of search have also gained in popularity in web search. In our case we are 
focused on domain of online shopping. We treat main processes of search engines which include crawling, 
indexing and query processing. Each process is developed based on general search engines and adapted to 
tackle the problems of the specified domain. Specifically, a search result ranking algorithm called 
Warehouse, which may be adapted to rank results of any specific domain, is introduced. 

1 INTRODUCTION 

Search engines have appliance in many different 
fields including searching medical literature, 
enterprise servers, and usually general search in web 
(Croft et al., 2010). Depending on their search 
domain these engines must address different issues, 
for example desktop search engines must index new 
documents, emails, web pages. On the other side 
web search engines like Google must crawl large 
scale of information and must have very short query 
response time. Issues that must be addressed by our 
system does not differ too much from general web 
search engines, because basically it's a web search 
engine. The only difference is that we focus on field 
of online shopping and not on the entire web. Main 
issues that must be treated in our system include 
efficient search, response time, freshness and 
extensibility. 

In our paper we discuss three main components 
of search engines: Input agents, database engine and 
query servers (Connolly and Hoar, 2014). Input 
agents handle process of information collection, 
parsing and text processing of data before indexing 
process. On our system we focus on finding and 
extracting product articles on commercial websites. 
We have developed a scrapper for specific websites 
which retrieves minimal information required to 
identify a product, not the entire document/page 
(more on Section 4). 

The database engine’s main purpose is to store 

the information in a manner that can it be found 
easily during query processing, usually through 
inverted indexes. Data and index structure strongly 
depends on the ranking algorithm. In our case we 
have chosen a relational database system as data 
storage which offers more flexibility to convert user 
input into structured queries 

The most important component of the system is 
query processing which determines the quality of the 
search. It consists of the ranking algorithm which 
determines the relevant information for user's 
request. In E-Shop system we have developed an 
algorithm called warehouse who treats articles as 
nodes with properties and applies some filters 
(feature functions) to determine the document score. 

2 RELATED WORK 

Web Search engines have existed since 90’s. Early 
systems only searched for string matches inside 
large archives of documents (called web directories), 
but their efficiency was low. However during the 
time there have been developed many algorithms for 
intelligent and efficient ranking during the search 
(example Google’s PageRank algorithm (Brin and 
Page, 1998)). 

Today’s search engines aren’t focused only on 
entire web, but also on many specific domains 
(called as vertical search engines). Most known 
existing search engines for our domain include 

376
Abdurrahmani, V., Ahmedi, L. and Rrmoku, K.
E-Shop - A Vertical Search Engine for Domain of Online Shopping.
DOI: 10.5220/0006366303760381
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 376-381
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Google Shopping (Vise, et al., 2006), Yahoo 
Shopping1 and local engines implemented in e-
commerce sites (Zhou et al., 2013). However our 
approach is not based on any existing system for 
domain of appliance. Instead we have combined 
well known principles of general search engines and 
basic principles of Google Shopping. 

3 SYSTEM ARCHITECTURE 

E-Shop's architecture consists of three internal 
components and four external systems which are 
used as source for information retrieval. These 
external systems are web systems for online 
shopping and are labeled as web stores (Amazon, 
Ebay, Walmart and Ali Express). 

The internal components consist of: 

 Web Server, 
 Database Server, and 
 Windows Service. 
 

Database component (Article Storage Server) serves 
as storage for retrieved information, and shortens the 
time needed for query processing because there is no 
need to re-retrieve and re-structure the information. 
The Web Server is the central component of the 
system which is involved nearly at all processes, and 
serves as a communication bridge between other 
components. The main purpose of Windows Service 
(Crawling Monitor Service) (Microsoft, n.d.) is to 
monitor the crawling and the indexing processes, 
where in this case the service is used as master who 
invokes tasks to other components. The reason why 
we have used a windows service is because web 
server is a passive entity and cannot invoke 
commands to himself. 

Below is listed the physical model of the system 
and the interactions between its components (Figure 
1). 

 
1 https://shopping.yahoo.com 

Walmart Web Stores Ebay Web Stores

Amazon Web Stores
AliExpress Web Stores

E‐Shop 
Web Server

Article Storage 
Server

Crawling 
Monitor
Service

Send/Retrieve
Data

Sends
Crawling

Operations

Crawl Data

Searches for 
products

Users

 

Figure 1: System architecture. 

4 INPUT AGENTS 

The indexing process is initialized by the windows 
service (master) based on a schedule when we 
suppose that the traffic at the system is lowest. First, 
the master requests the list of indexes and phrases to 
be crawled from the REST API of web server 
(slave). These indexes/phrases consist of two lists 
where the first one contains the phrases that doesn’t 
relate to articles on the system's storage, and the 
second one includes the indexes (keywords) that are 
outdated. For the first list, for each phrase we send 
crawling request to the slave and also break the 
phrase into indexes which will be appended to the 
second list (outdated indexes). We need to mention 
that each term is considered outdated 1 month after 
last crawling to keep retrieving fresh information. 

The crawling process starts when the master 
sends an index or phrase crawling command to the 
slave. Upon receiving the request, the slave starts 4 
child threads (Figure 2) where each worker handles 
information collection for specific web store. 

Start 
crawling
proces

Retrieve 
term list for 
crawling

Start threads
for crawling

AmazonWorker

EbayWorker

AliExpressWorker

WalmartWorker

Join
threads

Return
collection

 

Figure 2: Crawling process activity diagram. 

E-Shop - A Vertical Search Engine for Domain of Online Shopping

377



The worker (thread) uses a crawling component 
(called as Web Spider) to collect relevant data. Each 
web store has specific web spider which adapts to 
the structure of the web page. The spider component 
only crawls the first page and then uses a scrapper 
component (DOMNode) to extract the products. The 
scrapper treats the pages as XML documents and 
performs XPath queries and regular expressions to 
extract the information. In the end the scrapper 
performs a final check to discard the products which 
contains incomplete information.  

After collecting and transforming the 
information each worker’s collection is merged into 
single collection and prepared for indexing process. 
Below in Figure 3 we have listed a diagram showing 
the interaction between the crawling components. 

WebStore
Worker

WebStore
WebSpider

WebStore
DOMNode

Uses as 
scraper 

for fetching 
article 
fields

Uses as 
crawler 
function

 

Figure 3: Interaction between components of crawling 
process. 

The weakness of the current implementation of 
crawling process is that if we want to extend the 
crawling to other web stores, we need to develop a 
new scrapper/spider component that adapts the 
structure of the web store. Also if any of existing 
web stores change their structure no information will 
be collected and therefore we need to rewrite the 
scrapper/spider component of specified web store. 

The priority of current design is that it uses a 
single thread for each store and single request for 
each store. The only overhead is the time required to 
initialize the threads and merging the results which 
is still more efficient than single thread operation. 
Also we need to mention that we crawl information 
from other information retrieval systems, so without 
any knowledge how their algorithms works we 
benefit from them. There are also some side effects 
from the external systems because they have their 
policies how to rank the search results, and 
sometimes the higher ranked products are not much 
relevant. This is especially expressed in case of Ali 
Express store. To tackle this problem we have added 
an attribute which gives a relevance coefficient to 
each web store. 

5 INDEXING PROCESS 

Upon receiving the data collection from crawling 
process the slave first stores the articles to storage. 

Then the slave maps the relation between articles 
and keywords. This way we create the inverted 
index where the keyword points to articles. 

The model of database storage that we have 
chosen is relational database model (Figure 4). The 
reason that we have chosen this model is that 
because it creates indexes for fast access by using 
key constraints. We have decided to implement 
numeric identifiers for both articles and index terms 
(keywords) because the search for numeric values is 
way faster than text search. 

Article
ID

Title

Price

Link Reliability Store Amazon
Category

Ebay
Country

Time
Stamp

Image

Keyword
ID

Keyword

Constant

Article Indexes

Outdated Indexes

Temp
Keyword

Temp Phrase List

Temp
Phrase

 

Figure 4: Entity Relationship model. 

Each index also has a specific constant which is 
stored along the term on the database. This constant 
is calculated by the formula: 
 

1  (1)

 

In the above formula F represents the number of 
articles who contain the keyword (index), and C 
represents the total number of articles. 

This constant (KC) defines the inverted term 
frequency for the specified term (Croft et al., 2010). 
These constants are updated every day during the 
low traffic time in system by the event schedulers 
provided by database. The constants of inverted 
indexes have big importance on Warehouse 
Algorithm which will be discussed on Section 7. 

In our indexing process we haven't included 
stemming and stopping processes (Croft et al., 2010) 
which will reduce the efficiency of query process. 
The stopping process should not be included because 
we deal with many product brands and if we stop 
terms like “and” we may reduce relevance of 
retrieved information (e.g. “AND 1” brand). 
However, the inverted term frequency helps by 
reducing the weight of stop words. The stemming 
process will be treated on future works. 

 
 
 

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

378



6 QUERY PROCESSING 

Query processing is realized through simple steps by 
retrieving the products that match the user keywords 
and then by processing the Warehouse algorithm to 
rank the results. In our system we do not provide 
query expansion features or user tracking. We only 
transform the user query to SQL query to limit the 
relevant article list. 

The first step of query processing involves 
transforming query input into indexes (keywords). 
After transformation we check into storage which 
indexes exist and add the indexes that doesn’t exist 
to the list of outdated indexes for later crawling. 
Also if at least one keyword (index) doesn’t exist we 
add the phrase to the list for later crawling. After this 
step we check the percentage of indexes that exist in 
storage. If percentage of found indexes is greater 
than 60% we consider that we have relevant data for 
user’s query and perform the warehouse algorithm. 
If the percentage is lower than 60% we consider that 
our system doesn’t have relevant data for user’s 
query and we rely on external systems (web store) 
by performing direct crawling. In this case we do not 
store any data to the storage, we just show the 
retrieved ranked results from web stores (Figure 5). 
The only ranking that we perform to these results 
include relevance coefficient of web stores. 

Request received

Convert term to 
keywords

Find keywords in 
database and add new 
keywords to keyword 

search list

count(term keywords) 
!= found keywords

Add term to temporary 
term list Check percentage of 

found keywords

percentage > 60%

Perform crawl 
from web stores

Perform 
Warehouse Ranking 

Algorithm
Split content into 
pages (perform 
pagination)

Return requested page  
Figure 5: Workflow of query processing. 

7 WAREHOUSE ALGORITHM 

Warehouse ranking algorithm is a document at time 
scoring algorithm. The idea of this algorithm is to 
treat related data structures as node with properties, 
and then by applying featured functions (in our case 
called as filters) to the properties we compute the 
final document score where the score is ≤ 1. In 
warehouse algorithm we can extend featured 
functions to adapt the needs of domain of appliance. 
The only required featured function is “At least one 
rule”. 

7.1 Featured Functions 

In Warehouse we have to kinds of filters that we 
apply to the nodes:  

 Global filters, 
 Local filters 
 

The local filters are featured functions that apply to 
particular property of the node, example: word 
matching to the title of a book. The global filters are 
featured functions that apply to whole or a set of 
properties of the node, example: priority of sections 
of a web page. After performing all featured 
functions we calculate the final result as algebraic 
sum of product between local filters and global 
filters: 

 

⋯

 
(2)

 

In the above formula Gi represents global filters, Fi 
represents local filters and WR(n) the final document 
score for document n. 

In next sections we will treat the featured 
functions applied at E-Shop system. 

7.1.1 At Least One Rule 

This rule belongs to local featured functions. Its 
purpose is to eliminate every node that don’t have at 
least one of the search terms, this way it shortens the 
number of nodes to be ranked. In our case it applies 
to products where we eliminate the products that 
don’t match any of the terms in user’s query. This 
filter must be included at every application of 
warehouse algorithm no matter of the domain of 
appliance. 

E-Shop - A Vertical Search Engine for Domain of Online Shopping

379



7.1.2 Word Closeness Rule 

This rule also belongs to local featured functions, 
and its purpose is to search for word matches in a 
given text. The first step of this rule is to check if 
entire phrase is found in node’s property. If there’s 
no match the phrase is split into smaller phrases 
where the new phrases have length of n – 1 (n – total 
number of words in phrase). The splitting is done in 
way that we start at the beginning of the phrase and 
we continue to remove the first word and add new 
word at the end. If no match is found again we 
continue the splitting into n – 2, so this process is 
continued until the phrase length is one word. If the 
phrase length is one word the returned result will be 
0. In case we find a match we apply the following 
formula to compute the result of the rule: 
 

 (3)
 

In the formula above F is the number of matches 
found in search in i depth, N is number of words in 
search term, C is number of words in property/text, i 
is number of phrase subgroups of search term. 
 

ALGORITHM WCR(text, term) 
C ← WordCount(text); 
N ← WordCount(term); 
F ← 0; i ← 0; k ← N; WCR ← 0; 
wordGroups ← term; 
while k > 1 
    F ← CheckForMatches(property, 

wordGroups); 
    if F > 0 
        WCR ← F x (N – i) / (N x C); 
        break 
    else 
        k--; i++; 
        wordGroups ← SubgroupTerm 

(term, k) 
 

To clarify more the rule below we have depicted 
a diagram in Figure 6 describing how the rule splits 
the groups until a match is found. 

PHP and MySQL Web Development

php and web development

Node property value:

Term value:

php and web and web development

web developmentand webphp and

i = 0

i = 1

i = 2  

Figure 6: Appliance of Word Closeness Rule. 

In the example above the result of WCR rule will 
be as follow: 

2
4 2
4 5

0.20 (4)
 

In our system this rule is applied on title of the 
product. Disadvantage of this rule is that it only 
should apply at short texts. In large texts the search 
time will be very long. 

7.1.3 Property Priority Rule 

The purpose of this featured function is to define the 
weight of particular properties in manner that the 
sum of all weights must be 1, and belongs to global 
filters. In our case we divide the weight between 
only three properties: title (0.3), keywords (0.5) and 
reliability (0.2). The distribution of weights is not 
based on any analysis. 

The final score of article with Warehouse 
ranking algorithm in our case will apply the 
following formula: 
 

0.30  
0.50 
0.20 

(5)

 

To clarify how the warehouse algorithm is 
implemented in our system below is depicted a 
diagram that describes its appliance on a simple 
node (article in our case). In Figure 7 we show the 
applied local feature functions (filters on top of 
properties) and the applied global feature functions 
(filter on the left side). Also there are some extended 
featured functions that can be used using advanced 
search based on filters chosen by user interface. 

NodeArticle

WCR

Property 
Priority Rule

Title
Price

Image

Link

Keywords

Reliability
Amazon 
Category

Ebay 
Country

Store
KCR

AtLeastOneRule
(keywords)

<<extended>>
AtLeastOneRule

(store)

<<extended>>
AtLeastOneRule

(category)

<<extended>>
AtLeastOneRule

(country)

TimeStamp

0.30

0.20

0.50

Order(price, type)
Limit(price)

 
Figure 7: Appliance of Warehouse algorithm on a single 
node. 

8 USE CASES 

In this section we will provide two use cases. The 
first one demonstrates the situation where we 

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

380



consider that we have relevant information on our 
system, and the second one where we perform direct 
crawling from web stores. The dataset where the 
query is performed consist of 72 index terms (mostly 
technology brands) and 7756 articles. 

8.1 Use Case – Relevant Information 
Exists 

In this use case we perform a query with keywords 
(indexes) that already exist on our system, so that we 
evaluate the efficiency of our ranking algorithm. The 
query that we request is “acer laptop chromebook” 
(Figure 9) where all the indexes already exist on 
storage and have relations to existing articles. 

In this case the total time spend from request to 
response visualization is about 146.96ms and the top 
three results are shown on the Figure 8Figure where 
we see that the results are accurate. 

 

Figure 8: Search result page for query “acer laptop 
chromebook”. 

8.2 Use Case – No Relevant Data Exists 

In the second use case we perform the query "hugo" 
and the result contains mostly articles about books, 
movies and perfumes. The total time of response is 
about 2.41s and based on the search results we have 
seen that this approach is not providing highly 
relevant data (also the query which consists only 
from one word). 

9 CONCLUSIONS 

In our system we have developed an environment 

that adapts general search engines to the needs of 
specific domain. We have treated main functions of 
search engines (crawling, indexing, query 
processing), and tried to develop original methods 
for each of the processes. We also have developed a 
ranking algorithm that can be adapted to any dataset 
with simple modifications. 

However we haven’t discussed how the system 
could be distributed on multiple machines, which 
may be treated on future works. Other problems that 
could be treated include developing stemming 
techniques for our system, making recommendations 
based on geo locations, and improving featured 
functions of warehouse algorithm. Additionally, on 
future works we may evaluate the system with larger 
datasets that may be acquired by gathering data from 
different queries entered by users. 

REFERENCES 

Anon., 2016. Moz. Basics of Search Engine friendly 
design and development.. [Online] Available at: 
https://moz.com/ beginners- guide-to-seo/ basics-of-
search- engine- friendly- design- and- development 
[Accessed July 2016]. 

Brin, S. & Page, L., 1998. The Anatomy of a Large-Scale 
Hypertextual Web Search Engine.. Computer networks 
and ISDN systems, 30(1), pp. 107-117. 

Clark, J., 1999. XSL Transformations (XSLT). [Online] 
Available at: https://www.w3.org/TR/xslt/ 

Clark, J. & DeRose, S., 1999. XML Path Language 
(XPath). [Online] Available at: https://www.w3.org/ 
TR/xpath/ 

Connolly, R. & Hoar, R., 2014. Fundamentals of Web 
Development. 1st ed.:Pearson Education. 

Croft, B. W., Metzler, D. & Strohman, T., 2010. Search 
Engines, Information retrieval in practice. 1st 
ed.:Pearson. 

Microsoft, n.d. Introduction to Windows Service 
Applications. [Online] Available at: https://msdn. 
microsoft.com/en-us/library/d56de412(v=vs.110).aspx 
[Accessed 2016]. 

Vise, D. A., Malseed & Mark, 2006. The Google Story. 
reprint ed.:Delta Trade Paperbacks. 

Zhou, K., Cummins, R., Lalmas, M. & Jose, J. M., 2013. 
Which Vertical Search Engines are Relevant?. Rio de 
Janeiro, Brazil, ACM, pp. 1557-1568. 

 

E-Shop - A Vertical Search Engine for Domain of Online Shopping

381


