Steps Towards Simulating Smart Cities and Smart Islands with a Shared Generic Framework - A Case Study of London and Reunion Island

Tahina Ralitera, Maxime Ferard, Gonzalo Bustos-Turu, Koen H. van Dam, Rémy Courdier

2017

Abstract

Simulation models can be used as decision support tools for smart city design and planning. They allow to evaluate the possible consequences of projects, before their implementation in the real world. Decision makers could benefit from replicable ones that can be relevant and easily transferable from one territory to another so solutions can be compared and re-use of model components can save time. In this paper we consider the case of citizen’s mobility flow simulation. However, most of such simulation models are designed to be suitable for a specific kind of territory. Some of them are reusable, but in a context that does not differ much from the original one for which they were designed, or require lots of changes to be relevant in another context. We classify those contexts into urban and insular and we show that despite their difference, they could be complementary. We demonstrate that testing a simulation model designed for an urban context, in a context with strong constraints can help in its consolidation. Thereby, after testing an Agent Based Simulation Model originally applied to a case study in London, in Reunion Island, we present a more generic simulation model that works for both systems.

References

  1. Albino, V., Berardi, U., and Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22(1):3-21.
  2. Augusseau, X., Aulanier, F., Begue, A., Bourgoin, J., David, D., David, G., Degenne, P., Fargette, M., Lagabrielle, E., Lajoie, G., Laurent, J.-B., Lebourgeois, V., Lestrelin, G., Lo Seen, D., Loireau, M., Tillard, E., Todoroff, P., Tonneau, J.-P., and Vitry, F. (2013). Simulation cartographique au service de l'innovation collective. In SAGEO'2013, Brest, France. 16 p.
  3. Badariotti, D. and Weber, C. (2002). La mobilité résidentielle en ville. modélisation par automates cellulaires et système multi-agents à bogota. Lespace géographique, 31(2):97-108.
  4. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., and Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1):481-518.
  5. Bingham, C., Walsh, C., and Carroll, S. (2012). Impact of driving characteristics on electric vehicle energy consumption and range. Intelligent Transport Systems, IET, 6(1):29-35.
  6. Bustos-Turu, G., Van Dam, K., Acha, S., and Shah, N. (2015). Integrated planning of distribution networks: interactions between land use, transport and electric vehicle charging demand. In 23rd International Conference on Electricity Distribution, Lyon, France.
  7. Bustos-Turu, G., van Dam, K. H., Acha, S., Markides, C. N., and Shah, N. (2016). Simulating residential electricity and heat demand in urban areas using an agent-based modelling approach. In Energy Conference (ENERGYCON), 2016 IEEE International, pages 1-6. IEEE.
  8. Bustos-Turu, G., van Dam, K. H., Acha, S., and Shah, N. (2014). Estimating plug-in electric vehicle demand flexibility through an agent-based simulation model. In Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE PES, pages 1-6. IEEE.
  9. C?ertickÈ, M., Jakob, M., and Píbil, R. (2015). Analyzing on-demand mobility services by agent-based simulation. Journal of Ubiquitous Systems & Pervasive Networks, 6(1):17-26.
  10. Choo, C. W. (1997). It2000: Singapore's vision of an intelligent island. In Droege, P., editor, Intelligent Environments, pages 49 - 65. North-Holland, Amsterdam.
  11. Dijkstra, L., Garcilazo, E., and McCann, P. (2013). The economic performance of european cities and city regions: Myths and realities. European Planning Studies, 21(3):334-354.
  12. Giffinger, R. (2011). European smart cities: the need for a place related understanding. Department of Spatial Development, Infrastructure and Environmental Planning of Vienna university of Technology.
  13. Gioda, A. (2015). El hierro (canaries): une ˆile et le choix des transitions énergétique et écologique. VertigOla revue électronique en sciences de l'environnement, 14(3).
  14. Karabasoglu, O. and Michalek, J. (2013). Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains. Energy Policy, 60:445-461.
  15. Longo, M., Roscia, M., and Lazaroiu, G. C. (2014). Innovating multi-agent systems applied to smart city. Research Journal of Applied Sciences, Engineering and Technology, 7(20):4296-4302.
  16. Magnan, A. (2009). Systèmes insulaires, représentations pyramidales et soutenabilité: approche comparative océan indien/petites antilles. Les Cahiers dOutre-Mer. Revue de géographie de Bordeaux, 62(248):529-548.
  17. Maia, R., Silva, M., Araújo, R., and Nunes, U. (2011). Electric vehicle simulator for energy consumption studies in electric mobility systems. In Integrated and Sustainable Transportation System (FISTS), 2011 IEEE Forum on, pages 227-232. IEEE.
  18. McNally, M. G. and Rindt, C. R. (2007). The activity-based approach. In Handbook of Transport Modelling, pages 55-73. Emerald.
  19. Nations, U. (1994). United nations convention on the law of the sea. Technical report.
  20. North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko, P. (2013). Complex adaptive systems modeling with repast simphony. Complex adaptive systems modeling, 1(1):3.
  21. Roscia, M., Longo, M., and Lazaroiu, G. C. (2013). Smart city by multi-agent systems. In Renewable Energy Research and Applications (ICRERA), 2013 International Conference on, pages 371-376.
  22. Sweda, T. and Klabjan, D. (2011). An agent-based decision support system for electric vehicle charging infrastructure deployment. In 2011 IEEE Vehicle Power and Propulsion Conference, pages 1-5.
  23. The Ecological Sequestration Trust (TEST) (2016). The resilience.io platform. Accessed: 2017-01-23.
  24. Unicef et al. (2012). The state of the world's children 2012: children in an urban world. Technical report, eSocialSciences.
Download


Paper Citation


in Harvard Style

Ralitera T., Ferard M., Bustos-Turu G., H. van Dam K. and Courdier R. (2017). Steps Towards Simulating Smart Cities and Smart Islands with a Shared Generic Framework - A Case Study of London and Reunion Island . In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-241-7, pages 329-336. DOI: 10.5220/0006371203290336


in Bibtex Style

@conference{smartgreens17,
author={Tahina Ralitera and Maxime Ferard and Gonzalo Bustos-Turu and Koen H. van Dam and Rémy Courdier},
title={Steps Towards Simulating Smart Cities and Smart Islands with a Shared Generic Framework - A Case Study of London and Reunion Island},
booktitle={Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2017},
pages={329-336},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006371203290336},
isbn={978-989-758-241-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Steps Towards Simulating Smart Cities and Smart Islands with a Shared Generic Framework - A Case Study of London and Reunion Island
SN - 978-989-758-241-7
AU - Ralitera T.
AU - Ferard M.
AU - Bustos-Turu G.
AU - H. van Dam K.
AU - Courdier R.
PY - 2017
SP - 329
EP - 336
DO - 10.5220/0006371203290336