Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow,
I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I.,
Heng, J.-P., Hidasi, B., Honari, S., Jain, A., Jean, S., Jia,
K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P.,
Larsen, E., Laurent, C., Lee, S., Lefrancois, S.,
Lemieux, S., Léonard, N., Lin, Z., Livezey, J.A.,
Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.-A.,
Mastropietro, O., McGibbon, R.T., Memisevic, R., van
Merriënboer, B., Michalski, V., Mirza, M., Orlandi, A.,
Pal, C., Pascanu, R., Pezeshki, M., Raffel, C., Renshaw,
D., Rocklin, M., Romero, A., Roth, M., Sadowski, P.,
Salvatier, J., Savard, F., Schlüter, J., Schulman, J.,
Schwartz, G., Serban, I.V., Serdyuk, D., Shabanian, S.,
Simon, É., Spieckermann, S., Subramanyam, S.R.,
Sygnowski, J., Tanguay, J., van Tulder, G., Turian, J.,
Urban, S., Vincent, P., Visin, F., Vries, H.d., Warde-
Farley, D., Webb, D.J., Willson, M., Xu, K., Xue, L.,
Yao, L., Zhang, S. and Zhang, Y. (2016) ‘Theano: A
Python framework for fast computation of
mathematical expressions’, arXiv e-prints,
abs/1605.02688.
Brouwer, N., Kloeden, H. and Stiller, C. (2016)
‘Comparison and evaluation of pedestrian motion
models for vehicle safety systems’, pp.2207–2212.
Chollet, F. (2015) ‘keras’, GitHub repository.
Consortium of Project SADA ‘Project SADA’.
http://www.projekt-sada.de/ (Accessed 26 January
2016).
Graves, A. (2014) Generating Sequences With Recurrent
Neural Networks. http://arxiv.org/pdf/1308.0850v5.
Graves, A., Mohamed, A.-r. and Hinton, G. (2013) ‘Speech
recognition with deep recurrent neural networks’,
IEEE, pp.6645–6649.
Helbing, D. (1990) ‘Physikalische Modellierung des
dynamischen Verhaltens von Fußgängern (Physical
Modeling of the Dynamic Behavior of Pedestrians)’.
Helbing, D. and Molnar, P. (1995) ‘Social force model for
pedestrian dynamics’, Physical review E, Vol. 51,
No. 5, p.4282.
Hochreiter, S. (01.01.1991) Untersuchungen zu
dynamischen neuronalen Netzen, diploma thesis,
institut für informatik, lehrstuhl prof. brauer, technische
universität münchen.
Hochreiter, S. and Schmidhuber, J. (1997) ‘Long short-term
memory’, Neural computation, Vol. 9, No. 8, pp.1735–
1780.
I2EASE Consortium (2016) ‘I2EASE Project’.
http://www.cerm.rwth-aachen.de/i2ease (Accessed 26
January 2017).
Käding, C., Rodner, E., Freytag, A. and Denzler, J. Active
and Continuous Exploration with Deep Neural
Networks and Expected Model Output Changes.
http://arxiv.org/pdf/1612.06129v1.
Keller, C.G. and Gavrila, D.M. (2014) ‘Will the Pedestrian
Cross? A Study on Pedestrian Path Prediction’, IEEE
Transactions on Intelligent Transportation Systems,
Vol. 15, No. 2 [online]
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
6632960.
Pellegrini, S., Ess, A., Schindler, K. and van Gool, L.
(2009) ‘You'll never walk alone: Modeling social
behavior for multi-target tracking’, pp.261–268.
Rehder, E. and Kloeden, H. (2015) ‘Goal-directed
pedestrian prediction’, pp.50–58.
Robicquet, A., Sadeghian, A., Alahi, A. and Savarese, S.
‘Learning Social Etiquette: Human Trajectory
Understanding In Crowded Scenes’, in , Computer
Vision – ECCV 2016.
Schneider, N. and Gavrila, D.M. (2013) ‘Pedestrian path
prediction with recursive Bayesian filters: A
comparative study’, Springer, pp.174–183.
Sutskever, I., Vinyals, O. and Le V, Q. Sequence to
Sequence Learning with Neural Networks.
http://arxiv.org/pdf/1409.3215v3.
The City of San Diego (09.03.2017) ‘Smart City San
Diego’.
https://www.sandiego.gov/sustainability/smart-city.
Wertheimer, R. and others (2014) ‘Ko-PER
Fahrerassistenz und präventive Sicherheit mittels
kooperativer Perzeption: Partnerübergreifender
Schlussbericht’, schlussbericht, Bundesministerium für
Wirtschaft und Technologie (BMWi).
Xiao, T., Zhang, J., Yang, K., Peng, Y. and Zhang, Z.
(2014) ‘Error-driven incremental learning in deep
convolutional neural network for large-scale image
classification’, ACM, pp.177–186.