NeuroK: A Collaborative e-Learning Platform based on Pedagogical Principles from Neuroscience

Fernando Calle-Alonso, Agustín Cuenca-Guevara, Daniel de la Mata Lara, Jesús M. Sánchez-Gómez, Miguel A. Vega-Rodríguez, Carlos J. Pérez Sánchez

2017

Abstract

The use of online education platforms has grown extensively and most education centers and companies use them for their learning programs. Although technology has changed the learning environment, the pedagogical model has mostly remained the same as it was many years ago. Therefore, another education paradigm should arrive to online platforms in a generalized way. In this paper, NeuroK is presented as a new e-Learning platform leveraging the latest technologies and, moreover, implementing new tools that support pedagogical principles from neuroscience. While most of traditional platforms focus on content, content management and applying teacher-centred methodologies (everything goes through the teacher), NeuroK focuses on students, and uses collaborative learning, motivational processes and a “learning by doing” perspective to achieve a long-term relevant learning. The proposed NeuroK framework describes the already implemented tools and the new ones to be included in next versions. An active R&D process allows new methodologies from the fields of Learning Analytics, Data Mining and Social Learning to be proposed and implemented. The main contribution of this platform is to deploy a significant improvement in the e- Learning process based on a neurodidactics approach and data analysis research results.

References

  1. Anastasia, C. 2016. The Social Framework of Learning via Neurodidactics. Creative Education, 7(15), 2175.
  2. Anshari, M., Alas, Y., & Guan, L. S. 2016. Developing online learning resources: Big data, social networks, and cloud computing to support pervasive knowledge. Education and Information Technologies, 21(6), 1663- 1677.
  3. Bacon, D. R., & Stewart, K. A. 2006. How fast do students forget what they learn in consumer behavior? A longitudinal study. Journal of Marketing Education, 28(3), 181-192.
  4. Buckingham Shum, S.; Ferguson, R. 2012. Social Learning Analytics. Educational Technology & Society, 15 (3), 3-26.
  5. Dalsgaard, C. 2006. Social software: E-learning beyond learning management systems. European Journal of Open, Distance and E-Learning, 9(2).
  6. De-Marcos, L., Garcia-Lopez, E., & Garcia-Cabot, A. 2016. On the effectiveness of game-like and social approaches in learning: Comparing educational gaming, gamification & social networking. Computers & Education, 95, 99-113.
  7. De Smet, C., Valcke, M., Schellens, T., De Wever, B., & Vanderlinde, R. 2016. A Qualitative Study on Learning and Teaching With Learning Paths in a Learning Management System. JSSE-Journal of Social Science Education, 15(1), 27-37.
  8. Di Gesù, F., & Seminara, A. 2012. Neurodidáctica y la implicación de emociones en el aprendizaje. Lynx: Panorámica de estudios lingüísticos, 11, 5-39.
  9. Edelenbosch, R., Kupper, F., Krabbendam, L., & Broerse, J. E. 2015. Brain-Based Learning and Educational Neuroscience: Boundary Work. Mind, Brain, and Education, 9(1), 40-49.
  10. Elsenbaumer, S. (2013). Neurodidactics in Practice. A Practical Approach to Introducing Informatics into a Primary School in a Brain-based Way. Diploma Thesis, Alpen-Adria-Universität Klagenfurt.
  11. Fallon, C., & Brown, S. 2016. E-learning standards: a guide to purchasing, developing, and deploying standards-conformant e-learning. CRC Press.
  12. Gunasekara, R. C.; Mehrotra, K.; Mohan, C. K. (2015) Multi-Objective Optimization to Identify Key Players in Large Social Networks. Social Network Analysis and Mining, 5 (1), 21:1-21:20.
  13. Harandi, S. R. 2015. Effects of e-learning on Students' Motivation. Procedia-Social and Behavioral Sciences, 181, 423-430.
  14. Hattie, J. 2009. Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement. Taylor & Francis, London, New York.
  15. Haythornthwaite, C., Andrews, R., Fransman, J., & Meyers, E. M. 2016. The SAGE Handbook of Elearning Research, 2e. Sage.
  16. Hermann, U. 2009. Neurodidaktik. Grundlagen und Vorschläge für gehirngerechtes Lernen (2. überarb. Aufl.).
  17. Johnson, L., Adams Becker, S., Estrada, V., Freeman, A. 2014. NMC Horizon Report: 2014 Higher Education Edition. Austin, Texas: The New Media Consortium.
  18. Jordan, K. 2015. Massive open online course completion rates revisited: Assessment, length and attrition. The International Review of Research in Open and Distributed Learning, 16(3), 341-358.
  19. Masud, M. 2016. Collaborative e-learning systems using semantic data interoperability. Computers in Human Behavior, 61, 127-135.
  20. Monteiro, S., Lencastre, J. A., Osório, A. J., & Silva, B. D. D. 2016. Reducing attrition and dropout in e-learning: the development of a course design model. In ICERI2016 Proceedings 9th International Conference of Education, Research and Innovation (pp. 2440- 2446). IATED Academy.
  21. Resendes, M.; Scardamalia, M.; Bereiter, C.; Chen, B.; Halewood, C. 2015. Group-level formative feedback and metadiscourse. International Journal of Computer-Supported Collaborative Learning, 10 (3), 309-336.
  22. Rivas, J. C. 2009. Neurodidáctica y estimulación del potencial innovador para la competitividad en el tercer milenio. Educación y desarrollo social, 3(2), 28-35.
  23. Roth, G. 2004. Warum sind Lehren und Lernen so schwierig? Zeitschrift fur Paedagogik, 50(4), 496-506.
  24. Sabitzer, B. 2011. Neurodidactics-a new stimulus in ICT and computer science education. INTED, 5881-5889.
  25. Saleh, H. H.; Kadhim, N. J. 2016 Extractive MultiDocument Text Summarization Using Multi-Objective Evolutionary Algorithm Based Model. Iraqi Journal of Science, 57 (1C), 728-741.
  26. Sousa, D. A. 2014. Neurociencia educativa: Mente, cerebro y educación. Narcea Ediciones.
  27. Waelti, P., Dickinson, A. & Schultz, W. 2001. Dopamine responses comply with basic assumptions of formal learning theory, Nature 412, 43-48.
  28. Westerhoff, N. 2010. La neurodidáctica a examen. Mente y cerebro, (44), 34-40.
Download


Paper Citation


in Harvard Style

Calle-Alonso F., Cuenca-Guevara A., de la Mata Lara D., Sánchez-Gómez J., Vega-Rodríguez M. and Pérez Sánchez C. (2017). NeuroK: A Collaborative e-Learning Platform based on Pedagogical Principles from Neuroscience . In Proceedings of the 9th International Conference on Computer Supported Education - Volume 1: CSEDU, ISBN 978-989-758-239-4, pages 550-555. DOI: 10.5220/0006378705500555


in Bibtex Style

@conference{csedu17,
author={Fernando Calle-Alonso and Agustín Cuenca-Guevara and Daniel de la Mata Lara and Jesús M. Sánchez-Gómez and Miguel A. Vega-Rodríguez and Carlos J. Pérez Sánchez},
title={NeuroK: A Collaborative e-Learning Platform based on Pedagogical Principles from Neuroscience},
booktitle={Proceedings of the 9th International Conference on Computer Supported Education - Volume 1: CSEDU,},
year={2017},
pages={550-555},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006378705500555},
isbn={978-989-758-239-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Supported Education - Volume 1: CSEDU,
TI - NeuroK: A Collaborative e-Learning Platform based on Pedagogical Principles from Neuroscience
SN - 978-989-758-239-4
AU - Calle-Alonso F.
AU - Cuenca-Guevara A.
AU - de la Mata Lara D.
AU - Sánchez-Gómez J.
AU - Vega-Rodríguez M.
AU - Pérez Sánchez C.
PY - 2017
SP - 550
EP - 555
DO - 10.5220/0006378705500555