Growth Prediction for San Francisco and
Washington/Baltimore. International Journal of
Geographical Information Science, 12, 7, 699-714.
Clarke, K.C. (2008a) Mapping and Modelling Land Use
Change: an Application of the SLEUTH Model, in
Landscape Analysis and Visualisation: Spatial Models
for Natural Resource Management and Planning,
(Eds. Pettit, C., Cartwright, W., Bishop, I., Lowell, K.,
Pullar, D. and Duncan, D.), Springer, Berlin, 353-366.
Clarke, K.C. (2008b) A Decade of Cellular Urban
Modeling with SLEUTH: Unresolved Issues and
Problems, Ch. 3 in Planning Support Systems for
Cities and Regions (Ed. Brail, R. K., Lincoln Institute
of Land Policy, Cambridge, MA, pp 47-60.
Clarke, K. C. (2014a) Why Simulate Cities? GeoJournal
79:129–136
Clarke, K. C. (2014b) Cellular Automata and Agent-Based
Models. Chapter 62 in Fischer, M. M. and Nijkamp, P.
(eds) Handbook of Regional Science. Springer-Verlag,
Berlin Heidelberg.
Clarke-Lauer, M. D., and Clarke, K. C. (2011). Evolving
simulation modeling: Calibrating SLEUTH using a
genetic algorithm. Proc., 11th Int. Conf. on Geo
Computation, Univ. College London, London.
Clarke, K. C. (in press) Land Use Change Modeling with
SLEUTH: Improving Calibration with a Genetic
Algorithm. In MT Camacho Olmedo, M Paegelow, JF
Mas, F Escobar (eds.) Geomatic approaches for
modelling land change scenarios . Lecture Notes in
Geoinformation and Cartography LNGC series.
Springer Verlag.
Chaudhuri, G. and Clarke, K. C. (2013) The SLEUTH
Land Use Change Model: A Review. Int. Journal of
Environmental Resources Research, 1, 1, 88-104.
Colonna, A., Di Stefano, V., Lombardo, S., Papini, L.,
Rabino, G. A. (1998). Learning urban cellular
automata in a real world: The case study of Rome
metropolitan area. In: ACRI’98 third conference on
cellular automata for research and industry, Trieste,
7–9 October 1998. London: Springer, 165–18.
Dietzel, C. and Clarke, K. C. (2007) Toward Optimal
Calibration of the SLEUTH Land Use Change Model.
Transactions in GIS, 11, 1, 29-45.
Feng, Y., Liu, Y., Tong, X., Liu, M., and Deng, S. (2011).
Modeling dynamic urban growth using cellular
automata and particle swarm optimization rules.
Landscape and Urban Planning, 102(3), 188–196.
http://dx.doi.org/10.1016/j.landurbplan.2011.04.004.
Feng, Y. and Liu, Y., 2012. An optimised cellular
automata model based on adaptive genetic algorithm
for urban growth simulation. In: W. Shi, A. Yeh, Y.
Leung and C. Zhou, eds. Advances in spatial data
handling and GIS: 14th international symposium on
spatial data handling. Heidelberg, Germany: Springer,
27–38.
García , A. M. I. Santé , M. Boullón and R. Crecente
(2013) Calibration of an urban cellular automaton
model by using statistical techniques and a genetic
algorithm. Application to a small urban settlement of
NW Spain, International Journal of Geographical
Information Science, 27:8, 1593-1611, DOI:
10.1080/13658816.2012.762454
Goldstein, N.C. (2004). Brains vs. Brawn: Comparative
strategies for the calibration of a cellular automata-
based urban growth model. In: P. Atkinson, G. Foody,
S. Darby and F. Wu, eds., GeoDynamics. Boca Raton,
FL: CRC Press.
Gong, Z., Tang, W., and Thill, J. C. (2012).
Parallelization of ensemble neural networks for spatial
land-use modeling. In Proceedings of the 5th ACM
SIGSPATIAL international workshop on location-
based social networks (pp. 48–54). ACM.
Guan, Q., Wang, L. and Clarke, K. C. (2005) An
Artificial-Neural-Network-based, Constrained CA
Model for Simulating Urban Growth . Cartography
and Geographic Information Science. 32, 4, 369-380.
Houet, T., Aguejdad, R., Doukari, O., Battaia G. and
Clarke, K. (2016) “Description and validation of a
‘non path-dependent’ model for projecting contrasting
urban growth futures”, Cybergeo : European Journal
of Geography, Systèmes, Modélisation,
Géostatistiques, document 759
http://cybergeo.revues.org/27397
Holland J. H. (1998). Emergence: From Chaos to Order.
Addison-Wesley, Redwood City, CA.
Hu, Z., and Lo, C. (2007). Modeling urban growth in
Atlanta using logistic regression. Computers,
Environment and Urban Systems, 31(6), 667–688.
Jafarnezhad, J., Salmanmahiny, A., and Sakieh, Y. (2015).
Subjectivity versus objectivity—Comparative study
between Brute Force method and Genetic Algorithm
for calibrating the SLEUTH urban growth model.
Urban Planning and Development.
doi:10.1061/(ASCE)UP.1943-5444.0000307.
Kirtland, D. Gaydos, L. Clarke, K. C., DeCola, L.,
Acevedo, W. and Bell, C. (1994) An analysis of
human-induced land transformations in the San
Francisco Bay/Sacramento area. World Resources
Review, 6, 2, 206-217.
Li, X. and Gar-On Yeh, A. (2002) Neural-network-based
cellular automata for simulating multiple land use
changes using GIS. International Journal of
Geographic Information Science. 16, 4, 323-343.
Li, X., and Yeh, A. G. O. (2004). Data mining of cellular
automata’s transition rules. International Journal of
Geographical Information Science, 18, 723–744.
Liu, Y., and Phinn, S. R. (2003). Modelling urban
development with cellular automata incorporating
fuzzy-set approaches. Computers, Environment, and
Urban Systems, 27, 637–658.
Long, Y., Mao, Q., and Dang, A. (2009). Beijing urban
development model: Urban growth analysis and
simulation. Tsinghua Science and Technology, 14(6),
782–794.
National Research Council (2014) Advancing Land
Change Modeling: Opportunities and Research
Requirements. Geographical Sciences Committee:
Washington D. C.; National Academy Press.
Pijanowski, B.C., B. Shellito and S. Pithadia. 2002. Using
artificial neural networks, geographic information