R. J. (2014a). Dynamic difficulty using brain metrics
of workload. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems,
pages 3797–3806. ACM.
Afergan, D., Shibata, T., Hincks, S. W., Peck, E. M., Yuksel,
B. F., Chang, R., and Jacob, R. J. (2014b). Brain-
based target expansion. In Proceedings of the 27th
annual ACM symposium on User interface software
and technology, pages 583–593. ACM.
Baddeley, A. D. and Hitch, G. (1974). Working memory.
Psychology of learning and motivation, 8:47–89.
Berka, C., Levendowski, D. J., Cvetinovic, M. M., Petro-
vic, M. M., Davis, G., Lumicao, M. N., Zivkovic,
V. T., Popovic, M. V., and Olmstead, R. (2004). Real-
time analysis of eeg indexes of alertness, cognition,
and memory acquired with a wireless eeg headset. In-
ternational Journal of Human-Computer Interaction,
17(2):151–170.
Carhart-Harris, R. L., Leech, R., Hellyer, P. J., Shanahan,
M., Feilding, A., Tagliazucchi, E., Chialvo, D. R., and
Nutt, D. (2015). The entropic brain: a theory of con-
scious states informed by neuroimaging research with
psychedelic drugs. Psychoanalytical neuroscience:
Exploring psychoanalytic concepts with neuroscien-
tific methods, page 140.
Choi, H. and Berger, J. (2013). Waax: Web audio api ex-
tension. In NIME, page 499502.
Clark, A. (2013). Whatever next? predictive brains, situated
agents, and the future of cognitive science. Behavioral
and Brain Sciences, 36(03):181–204.
Csikszentmihalyi, M. (1996). Flow and the psychology of
discovery and invention. New Yprk: Harper Collins.
Fairclough, S. (1993). Psychophysiological measures of
workload and stress. Driving future vehicles, pages
377–390.
Fairclough, S. H., Moores, L. J., Ewing, K. C., and Roberts,
J. (2009). Measuring task engagement as an input to
physiological computing. In 2009 3rd International
Conference on Affective Computing and Intelligent In-
teraction and Workshops, pages 1–9. IEEE.
Fairclough, S. H., Venables, L., and Tattersall, A. (2005).
The influence of task demand and learning on the psy-
chophysiological response. International Journal of
Psychophysiology, 56(2):171–184.
Ferrari, M. and Quaresima, V. (2012). A brief review on
the history of human functional near-infrared spec-
troscopy (fnirs) development and fields of application.
Neuroimage, 63(2):921–935.
Friston, K. (2010). The free-energy principle: a uni-
fied brain theory? Nature Reviews Neuroscience,
11(2):127–138.
Gevins, A. and Smith, M. E. (2003). Neurophysiologi-
cal measures of cognitive workload during human-
computer interaction. Theoretical Issues in Er-
gonomics Science, 4(1-2):113–131.
Girouard, A., Solovey, E. T., Hirshfield, L. M., Chauncey,
K., Sassaroli, A., Fantini, S., and Jacob, R. J.
(2009). Distinguishing difficulty levels with non-
invasive brain activity measurements. In IFIP Con-
ference on Human-Computer Interaction, pages 440–
452. Springer.
Glasser, M., Coalson, T., Robinson, E., Hacker, C., Harwell,
J., Yacoub, E., Ugurbil, K., Anderson, J., Beckmann,
C., Jenkinson, M., et al. (2015). A multi-modal par-
cellation of human cerebral cortex. Nature.
Grossman, T. and Balakrishnan, R. (2005). The bubble cur-
sor: enhancing target acquisition by dynamic resizing
of the cursor’s activation area. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 281–290. ACM.
Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., and
Pfurtscheller, G. (2003). How many people are able to
operate an eeg-based brain-computer interface (bci)?
IEEE transactions on neural systems and rehabilita-
tion engineering, 11(2):145–147.
Hincks, S. W., Afergan, D., and Jacob, R. J. (2016). Us-
ing fnirs for real-time cognitive workload assessment.
In International Conference on Augmented Cognition,
pages 198–208. Springer.
Hincks, S. W., Debellis, M., Lee, E. Y., ten Brink, R.,
and Jacob, R. J. (2017). Towards bidirectional brain-
computer interfaces that use fnirs and tdcs. In PhyCS.
Hirshfield, L. M., Gulotta, R., Hirshfield, S., Hincks, S.,
Russell, M., Ward, R., Williams, T., and Jacob, R.
(2011). This is your brain on interfaces: enhancing
usability testing with functional near-infrared spec-
troscopy. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 373–
382. ACM.
Hirshfield, L. M., Solovey, E. T., Girouard, A., Kebinger,
J., Jacob, R. J., Sassaroli, A., and Fantini, S. (2009).
Brain measurement for usability testing and adaptive
interfaces: an example of uncovering syntactic work-
load with functional near infrared spectroscopy. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2185–2194.
ACM.
Hoffmann, S. and Falkenstein, M. (2008). The correction
of eye blink artefacts in the eeg: a comparison of two
prominent methods. PLoS One, 3(8):e3004.
Homan, R. W., Herman, J., and Purdy, P. (1987). Cere-
bral location of international 10–20 system electrode
placement. Electroencephalography and clinical neu-
rophysiology, 66(4):376–382.
Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
Killingsworth, M. A. and Gilbert, D. T. (2010). A
wandering mind is an unhappy mind. Science,
330(6006):932–932.
Maior, H. A., Pike, M., Sharples, S., and Wilson, M. L.
(2015). Examining the reliability of using fnirs in
realistic hci settings for spatial and verbal tasks. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 3039–
3042. ACM.
Mann, Y. (2015). Interactive music with tone.js. In Proceed-
ings of the 1st annual Web Audio Conference. Citeseer.
Perfors, A., Tenenbaum, J. B., Griffiths, T. L., and Xu, F.
(2011). A tutorial introduction to bayesian models of
cognitive development. Cognition, 120(3):302–321.
Entropic Brain-computer Interfaces
33