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Abstract: During the last few years, the Dynamic Partial Reconfiguration (DPR) has been introduced to the embedded 
systems as a key technique that aims at improving the flexibility of Field-Programmable Gate Array 
(FPGA)-based system reconfiguration. However, the design of these systems is a hard task using low-level 
functions where the design of the hardware side precedes that of the software. Recently, Model-Driven 
Engineering (MDE) based approaches have emerged. They aim at simplifying the modeling of the 
dynamically set systems and keep a design flow where DPR application and architecture are designed in 
parallel. In fact, there is a lack of reusable and generic models that allow the improvement of the designers’ 
task and the decrease of the development costs. In order to overcome these issues we propose in this paper 
an additional featuring or abstraction level in the DPR design flow introduced by these approaches. Our aim 
is to suggest for designers a method (process and models) which allows reusing recurrent application 
models and sharing experience-owned knowledge. The proposed method is a patterns system which is a 
combination of architectural and behavioral patterns dedicated to the Dynamic Partial reconfigurable Real-
Time Embedded (DP-RTE) systems. 

1 INTRODUCTION 

The real-time embedded systems have become so 
useful in our life. They are mainly related to the 
image and signal processing applications in which a 
significant quantity of data is regularly processed 
through repetitive calculations. Embedded systems, 
and particularly DP-RTE systems, are more complex 
and challenging to develop compared to software 
systems. In addition to requiring high computing 
power at considerable speeds, they are subject to a 
multitude of constraints such as resource limitations 
and execution time (Henzinger et al., 2007). The 
growing complexity and the high design costs of 
these systems pushed the designers to apply the DPR 
technique. Indeed, a DP-RTE system offers a high 
functional flexibility while maintaining good 
performance (Marques, 2012). These systems can be 
reconfigured for an unlimited number of times. They 
offer the ability to add new features and make 
changes to the system after its creation. However, 
the design of such systems has become an expensive 
task in terms of time. It also requires a broad 

knowledge of the technical details of the target 
platforms. Facilitating the work of DP-RTE systems 
designers and reducing the development costs and 
time, is a major challenge in this field. In response to 
these issues, several high-level design approaches 
(Beux, 2007) (Ochoa-Ruiz et al., 2012) have been 
emerged: It is a high-level co-design under the Y-
model where the application and the architecture are  
designed in a parallel way. The development offers 
for designer’s flexibility, reusability and automation 
as well as it hide technical details. It is based on 
MDE (Schmidt, 2006) and MARTE (OMG, 2011) 
(Modeling and Analysis of Real-Time and 
Embedded Systems) profile. Nevertheless, there is a 
lack of reusable and generic models that speeding 
and facilitating the reuse of these complex systems. 
A pattern presents an applied solution to share 
experience owned knowledge and generic terms to 
obtain fast and widely used designs (Gamma et al., 
1995). However, most of the research studies based 
on pattern solution are oriented towards software 
systems. Furthermore, they do not deal with DP-
RTE system development and ignore important 
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adaptation proprieties of these systems.  
In this paper, we propose a new method for the 

DP-RTE systems design under the Y-model. Our 
contribution is formalized as a patterns system 
formed with process patterns that present fragments 
of demarches based on proposed criteria to assist 
and guide the designer to product patterns. Our 
objective allows DPR designers to reuse recurrent 
solutions that have been validated by experience and 
handle the real-time features of the DPR process. 
This work is characterized by a new novelty which 
is the description of the proposed patterns using 
MARTE profile. Using a rich terminology for the 
specification and analysis of embedded systems, 
MARTE enables a joint design of the hardware and 
software parts of embedded systems.  

This paper is organized as follows: the second 
section summarizes the work on the high-level 
design of dynamically reconfigurable systems and 
the pattern-based adaptation. The proposed patterns 
system is presented in the third section and it will be 
illustrated by a case study in the fourth section. 
Finally, the last section is dedicated to conclude the 
paper and present our future work. 

2 RELATED WORKS 

2.1 High Level Design of DPR 

Several approaches have investigated the design of 
DPR process such as the design of the 
reconfigurable application. This design has been 
evolved from one work to another through the 
tagged design flow. Previously proposed solutions 
were mainly based on the MDE approach. The main 
contributions in (Cherif, 2013) are the modeling of a 
deployment level, a physical platform and a control 
level. The design flow is inspired by GASPARD’s 
work (Gamatie et al., 2008). This flow begins with a 
joint modeling of the application and the architecture 
as well as the mapping between them. Next, the 
authors in (Cherif, 2013) proposed an 
UML/MARTE design flow for the automatic 
generation of RTL code to be implemented on 
dynamically reconfigurable FPGAs. They added to 
the MARTE profile a set of stereotypes such as the 
ReconfigurableRtUnit stereotype to model the 
reconfigurable tasks of applications in the DPR 
process on Xilinx FPGAs. Other approaches, which 
have addressed the modeling of reconfiguration 
control, have been integrated into GASPARD 
project. First results in (Cherif et al., 2011) proposed 
a high level modeling of a distributed modular 

controller to manage the reconfiguration in FPGAs. 
The MARTE profile- based approach was improved 
by (Chiraz, 2012) to model the semi-distributed 
control as a set of distributed modular controllers 
which performs the observation, decision-making, 
reconfiguration tasks and coordination between 
distributed controller-made decisions. This 
Modeling aims at respecting global constraints and 
system objectives. Moreover, the authors in (Quadri, 
et al., 2010) developed a co-design approach for Soc 
(System on chips), in the GASPARD framework. 
The work made the automation of code generation 
from high-level MARTE models. Indeed, they use 
an intermediate level which provides different 
mechanisms to link the low level of implementation 
with high-level models. Furthermore, the authors 
extended the MARTE profile with a set of concepts 
to specify the DPR in modern FPGAs.  

All the approaches described above are 
beneficial because they facilitate and fix the 
development of dynamically reconfigurable systems. 
However, they have some deficiencies. First, 
proposed solutions depend on the hardware platform 
as they are based on specific concepts and low-level 
models that describe the Xilinx design methodology. 
These approaches are only interested in the 
modeling without addressing the actual DPR process 
behind monitoring features, reconfiguration 
decisions and system features management. Then, 
these studies do not provide support for the 
evaluation and validation of real-time constraints 
and resources. Finally, they are not generic enough 
because they handle specific reconfiguration 
problems which prevent their reusability from being 
adapted to the new requirements and constraints of 
the system. The development of design patterns is a 
promising alternative approach to deal with the latest 
problem. A pattern favors the extensibility and reuse 
of design and gives an abstraction view of a 
recurring problem. 

2.2 Patterns based Adaptation 

In literature, there are few works that have presented 
patterns for the adaptation of embedded systems. 
Regarding the software architecture design, Gamma 
and al in (Gamma et al., 1995) proposed a design 
patterns that define the running of application and 
aim at specifying a dynamic behavior for predefined 
types of software architectures which are the 
master/slave, centralized, decentralized, client/server 
architectures. The contributions of (Schmidt et al., 
2000) are the basis of a pattern language that handles 
problems related to concurrency and networking. 
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The proposed patterns consist in defining a service 
provided by a middleware and then specifying a 
generic implementation of this service. In (Corsaro 
et al., 2002), the author proposed a Virtual 
component pattern that allows the developers of 
middleware to have a large set of functionalities to 
their users. The suggested pattern, which permits the 
adaptation of a distributed application to the 
embedded systems’ memory constraints, has been 
applied in a variety of middleware, such as the JVM 
(Java virtual machines).  

Most of the previously described works proposed 
pattern solutions that are oriented software system 
design. Some of these works describe the embedded 
systems design but they ignored the hardware side 
which is as essential as the software. Furthermore, 
these latter didn’t deal with real time characteristics 
of the system adaptation. In (Said et al., 2014), the 
authors proposed a pattern-based specification for 
adaptive embedded systems. They have developed 
patterns for the MAPE (Monitor, Analyzer, Plan and 
Execute) adaptation (Chess, 2003) loop which 
consists of four adaptation modules. Separately in 
other contexts, these modules allow the promotion 
of their reuse. They also promote reusability and 
modularity designs. The patterns take into account 
the management of adaptation performance as well 
as the evaluation of real time characteristics of 
adaptation modules which are important in the 
modeling the embedded systems. This work 
proposed behavior patterns of the adaptation 
process; however, it is not concerned with the 
architecture of adaptation process which is hidden 
behind the adaptable components and the 
communication activity between them. 

In this state of the art, we are discussing the 
studies that present approaches to DPR process 
design and the modeling of adaptation process using 
patterns. The main contribution of these studies is a 
high-level modeling of DPR using MDE based 
approach under MARTE profile to both guarantee 
abstraction and automation. In the following, we 
present our contribution which is built on a new 
pattern-based design flow that will be the subject of 
the next section. 

3 THE PROPOSED PATTERNS 
SYSTEM 

Before going on to explain the contributions of our 
method, we begin by presenting the pattern concept: 
According to (Buschmann et al., 1996), it is a 

template which is seen as a normative model to be 
copied or used. There are dependency relationships 
between patterns. These relations form a system that 
connects the different consecutive patterns. As 
reported by (Buschmann et al., 1996), a patterns 
system is a collection of patterns accompanied by a 
guide for their implementation, use and 
combination. The patterns must be weaving together 
in a cohesive whole that shows the inherent 
structures and relationships in each of its 
components to achieve a common goal. In the case 
of a complex system with tens patterns, it is 
necessary to have classification criteria.  

Our approach focuses on the application part in 
the DPR design flow (Cherif, 2013). The method is 
formalized as a patterns system called PDPR 
(Patterns for Dynamic Partial Reconfiguration) 
dedicated to the DP-RTE systems; it is illustrated in 
figure 1. Our goal is to provide the designers with a 
method (process and models) to reuse recurrent 
application models and share experience-owned 
Knowledge. The system is composed of process 
patterns (step 2 in figure 1) and product patterns 
(step 3 in figure 1).  

 

Figure 1: The Proposed PDPR system for DPR design 
flow. 

The process pattern proposes to the designer a 
demarche to navigate the collection of the proposed 
product patterns and choose the best one that meets 
his needs through classification criteria (step 1 in 
figure 1). The product patterns allow the 
capitalization and reuse of model solutions. 
Absolutely, the model solution is composed of two 
types of product patterns: First, the patterns for DPR 
architecture (A-PDPR: Architectural Pattern for 
Dynamic Partial Reconfiguration) which represent 
the components of the system to be reconfigured as 
well as the communication between them. Second, 
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the patterns for the behavior of DPR (B-PDPR: 
Behavioral Pattern for Dynamic Partial 
Reconfiguration) that describe the reconfiguration 
engine process of these components. In what 
follows, we will present the three steps of our 
method: we begin by listing the proposed 
classification criteria. In step 2 (see Section 3.2) and 
step 3 (see Section 3.3), we present the different 
patterns of the PDPR system under the P-sigma 
formalism (Schmidt et al., 2000). 

The main rubrics used are identifier, problem, 
solution, application, use, require. The rubric use 
and require expresses the dependency relationship 
between the different patterns of the PDPR system. 

3.1 Step 1: Classification Criteria 

In a DP-RTE system, an application is a set of tasks 
communicating with one other. We define an initial 
list of criteria to characterize tasks and 
communication between them. These criteria 
subsequently facilitate the search and selection of 
the product pattern that meets the designer’s needs. 
These criteria are the synthesis of our study of the 
art. 
 Action type: We can distinguish three types of 

actions (see figure 2) sent by a task: (1) Signal 
send: The signals are equivalent to global 
variables ensuring communication between the 
real-time units. (2) Function call: Functions are 
blocks of instructions that return a value. (3) 
Data exchange: A task can communicate with 
another to send or receive data. These three types 
of actions can invoke a DPR process (Marques, 
2012) in the system. 

 Task State: In a DP-RTE system and during a 
DPR process, we distinguish two kinds (Cherif, 
2013) of tasks under their states. A static task 
always handles the same algorithm and sends the 
resulting data to the same task with which it 
communicates. For some input data, the 
calculation to be carried out is always the same 
regardless of the previous data or the change of 
environment. A dynamic task is characterized by 
a behavior that varies due to external factors. In 
other words, it is adapted to the environment. 

 Synchronization: Communication between two 
real-time units (tasks) can be carried out in 
different modes: (1) the synchronous mode 
where the task waits for the end of the client 
task’s execution before proceeding. (2) The 
asynchronous mode where the task does not wait 
for the execution of the client task. 

 

 

Figure 2: Action type criteria. 

 Type of communication (exchange): We present 
three types (Marques, 2012) of communication. 
(1) A point-to-point communication between 
only two tasks at the same time. (2) A multipoint 
exchange, where the sender task sends the 
message simultaneously to a limited number of 
tasks that requested an exchange. (3) A broadcast 
(diffusion) communication, where the sender 
task sends the message simultaneously to all the 
tasks participating in the communication whereas 
those that are not concerned with ignore it. 

 Direction of Communication: The exchange 
between two tasks can be unidirectional or 
bidirectional.  

In our patterns system, the values of such previously 
presented criteria change from one product pattern to 
another like a set of constraints which are expressed 
using OCL Language (Group, 2003). The 
corresponding constraints are shown in see table 2 
and table 5. 

3.2 Step 2: Process Patterns 

As already mentioned, the PDPR system consists of 
a set of process patterns that guide the designer to 
search and select one of the proposed product 
patterns. The entry process pattern to the PDPR 
system is named Input-PDPR which coordinates the 
use of other process patterns. The navigation in the 
different process patterns is carried out using the 
previously described criteria. Each process pattern 
proposes a fragment of demarche and orients the 
designer to a process or product pattern in the 
patterns system. The different process patterns are 
represented as an activity diagram. In what follows, 
one example of process patterns will be presented in 
table 1. 
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Table 1: "PDPR: Exchange-Synchronous" process pattern. 

Identifier PDPR: Exchange-synchronous 

Context This pattern requires the use of the Input-PDPR pattern. 

Problem Orients the designer when the type of synchronization between tasks is synchronous. 

Demarche Solution A simultaneous connection can only be bidirectional. This connection leads to two types of 
patterns, depending on the action type criteria: When the action type is a call/signal exchange. 
The designer is oriented towards two types of product patterns: The "A-PDPR: Signal-send" 
pattern or the "A-PDPR: Function-call" pattern. When the action type is a data exchange, the 
designer is oriented to the "A-PDPR: Data-exchange" pattern. 
Such patterns are not defined at this level. 

Use A-PDPR:Signal-send, A-PDPR:Function-call and A-PDPR:Data-exchange pattern. 

Require Input-PDPR pattern. 

 
3.3 Step 3: Product Patterns 

The product patterns of the PDPR system provide a 
level of abstraction that allows the DPR designers to 
reason about the general behavior of an application 
without giving the details of implementation. They 
propose a double description: An architectural 
description that describes the structure of the 
application, which includes the tasks and 
interactions between them, and a behavioral 
description that follows and organizes the behavior 
of the tasks in collaboration. The patterns of the 
PDPR system are based on the combination of 
formal and semi-formal languages. The joint use of 
UML/MARTE and OCL to specify the model 
solution of the product patterns makes it possible to: 
increase the reuse of the proposed patterns, facilitate 
the understanding of the overall architecture and 
specify the constraints that allow controlling its 
reuse and its adaptation.  The five proposed product 
patterns are illustrated respectively by table 2, table 
3, table 4, table 5 and table 6. 

3.4 Extensible Patterns System 

The classification criteria and the demarches allow 

guiding the designer (DPR engineer) in his choice of 
the most appropriate model solution. Once he has 
chosen his demarche, the designer may be 
confronted with two situations (see figure 3) : (1) 
The configuration demarche leads to various models 
(product pattern): In this case, the reconfiguration 
(DPR) engineer can suggest to the patterns system 
(PDPR) engineer the addition of one or several 
criteria in order to distinguish between two 
neighboring demarches. This implies the addition of 
new demarches and the update of the different 
process patterns constituting it.  

(2) The product pattern is not adequate to the 
engineer application’s needs: It is necessary to 
elaborate a new product pattern representing the 
expected model solution. The application engineer 
can also propose new criteria to differentiate his 
architecture from that proposed to him. The figure 
illustrates the set of steps that the reconfiguration 
engineer and the patterns engineer must follow. 
The next section is devoted to the instrumentation 
and the validation of the proposed PDPR system in a 
concrete example. 
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Table 2: "B-PDPR:Follow-behavior" product pattern. 

Identifier B-PDPR:Follow-behavior 

Context If the task state is dynamic. 

Problem The pattern is applied when the designer wants to change the behavior of a dynamic task in the 
DPR process. It intercepts his behavior over the time and informs the rest of the application 
about his new state. 

Model Solution Compared to the patterns presented by the research studies [(Buschmann et al., 1996), (Schmidt 
et al., 2000), (Corsaro et al., 2002)], this pattern is dedicated the DP-RTE systems adaptation 
behavior and deals with real-time proprieties of these systems. A task is stereotyped with 
MARTE:RtUnit and MARTE:ResourceUsage concepts. The ResourceUsage provides a set of 
non-functional properties representing the consumed values of the resources. A task class 
defines a method evaluate () that checks whether a non-functional property has been optimized 
during a DPR process, the evaluation is based on minimum and maximum values. A non-
functional property to be evaluated by this pattern is the consumed energy which is stereotyped 
with MARTE:NFP concept.  

The pattern is based on: (1) State interface which is stereotyped with MARTE:Mode 
concept, defines the behavior that specifies a set of mutually exclusive modes. (2) Concrete 
states (state-1, state-2) which implement the behaviors. (3) Context (Current-behavior) which is 
stereotyped with MARTE:ModeBehavior concept, stores the current state and calls the 
corresponding behavior.  

 

 
Application example 

 
A filter task can be in two different states: color or black and white. When a filter task receives 
requests from other tasks, it responds differently according to his current state. The pattern 
describes how the filter task behaves differently in each state. The key idea of this pattern is to 
introduce a Filter-state abstract class to represent the states of the filter. It declares a common 
interface to all the classes representing the different operating states. The sub-classes of Filtre-
state implement specific behaviors. For example, the Color and BlackAndWhite classes 
implement a particular behavior for the color and the black and white states of the filter task. 

Use A-PDPR:Signal-send, A-PDPR:Function-call and A-PDPR:Data-exchange pattern. 
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Table 3: "B-PDPR:Abstract-behavior" product pattern. 

Identifier B-PDPR:Abstract-behavior 

Context If the task state is dynamic. 

Problem The pattern is applied to a dynamic task in the DPR process, is used when a task has different 
behaviors. The pattern mainly seeks to separate the main class from its behaviors (algorithms) by 
encapsulating them into different classes. 

Model Solution This pattern which is dedicated to the DP-RTE system adaptation behavior, deals with the real 
time proprieties of these systems. A task is stereotyped with MARTE:RtUnit and 
MARTE:ResourceUsage concepts. It may have one or more behaviors. The class task maintains a 
reference to abstract behavior. It is configured with a concrete algorithm. A behavior is 
stereotyped with MARTE:ModeBehavior concept. A non-functional property to be evaluated by 
this pattern is the consumed energy which is stereotyped with MARTE:NFP concept. The class 
Abstract-behavior which is the standard interface of all algorithms is used by a task to call a 
particular algorithm. The classes Behavior-A, Behavior-B are specific algorithms.  

Application 
example 

Filtering strategies are not implemented by the Filter class but by the subclasses of the Algorithm-
filter abstract class. The subclasses use different algorithms: Low-pass filter, High-pass filter and 
Band-pass filter. A Filter task preserves a reference to an Algorithm-filter object. When a filter 
task is executed, it passes the responsibility to its Algorithm-filter object which specifies the 
algorithm that must be used. 

Use A-PDPR:Signal-send, A-PDPR:Function-call and A-PDPR:Data-exchange pattern. 

Table 4: "A-PDPR:Function-call" product pattern. 

Identifier A-PDPR:Function-call 

Classification call/signal AND (synchronous OR asynchronous) AND bidirectional AND (point-to-point OR 
multipoint) 

Problem Compared to the patterns presented by the research studies [(Buschmann et al., 1996), (Schmidt 
et al., 2000)] which are software-oriented systems design, this pattern is dedicated to the DP-RTE 
systems adaptation architecture. In these systems, a function call can trigger a DPR process. This 
pattern is dedicated to the communication between tasks by calling functions. The sender task 
may or may not wait for the response of the receiver before continuing its execution. However, it 
must receive a response; hence the sense of communication is necessarily bidirectional. The 
communication is either synchronous or asynchronous. A component can call one component or 
several; so the type of communication is either point-to-point or multipoint. 
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Table 4: "A-PDPR:Function-call" product pattern (cont.). 

Model Solution A task is stereotyped with MARTE:RtUnit. The calling task sends a call via a connector through 
a specific required port which is stereotyped with MARTE:ClientServerPort. This port allows 
passing a call that is forwarded to the other task that responds via the provided port kind. A 
calling task can be modified or removed from the configuration after completing the request it 
initiated. A called task can be modified or deleted after processing the query.  

 
 

Use B-PDPR:Follow-behavior, B-PDPR:Abstract-behavior patterns 

Table 5: "A-PDPR:Signal-send" product pattern. 

Identifier A-PDPR: Signal-send 

Classification call/signal AND (synchronous OR asynchronous) AND (bidirectional OR unidirectional) AND 
(point-to-point OR multipoint OR diffusion) 

Problem This pattern is dedicated to the design of DPR process architecture which is based on sending 
signals. A signal can trigger a DPR process. The components of this pattern are the client that 
publishes a signal and the server that consumes it. The type of communication is multipoint, 
diffusion or point-to-point. The communication between the tasks can be synchronous or 
asynchronous. The direction of communication is bidirectional, but it can also be unidirectional. 

Model Solution The signal exchange is passed via a connector port. The client issues a signal via the required 
port kind. The server consumes the signal via the provided port. A task is stereotyped with 
MARTE:RtUnit and the port with MARTE:ClientServerPort which allows passing a signal. A 
client task can be modified or removed from the configuration after completing the request it 
initiated. A server task can be modified or deleted after processing the query. The basis of this 
pattern is to delete, add or modify a task. 

 
Use B-PDPR:Follow-behavior and B-PDPR:Abstract-behavior pattern 
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Table 6: "A-PDPR:Data-exchange" product pattern. 

Identifier A-PDPR: Data-exchange 

Classification Data AND (synchronous OR asynchronous) AND bidirectional AND(point to point OR 
multipoint) 

Problem This pattern is used to allow tasks accessing a storage system. Access is managed by a server 
task. This pattern is similar to the "client/server" architecture except that the client requests a 
server task for a query. The latter has the client role for the storage system. Communication is 
processed either in a synchronous or an asynchronous mode, but it is always bidirectional. 

Model Solution 

 
Compared to the patterns presented by the research studies [(Buschmann et al., 1996), (Schmidt 
et al., 2000)] which are software-oriented systems design, this pattern is dedicated to the DP-
RTE systems adaptation architecture. The principle of this pattern is to delete, add or modify a 
task; it is used when sending data between client and server task which can be modified, deleted 
or added. Communication is carried out according to a communication protocol via a connector 
port. The client invokes the server through its out port. The server receives the request through 
it’s IN port. A task is stereotyped with MARTE:RtUnit and the port with MARTE:FlowPort 
which allows passing the data. 

Use B-PDPR:Follow-behavior and B-PDPR:Abstract-behavior pattern 

 

 

Figure 3: Actors features of PDPR-Tool 

4 CASE STUDY 

All the engineering systems are based on several 
methods. C. Rolland (Roland et al., 1988) describes 
one of them by defining three corresponding 
components: models, demarches and tools (or 
techniques). At this stage, we have addressed the 
first two components, the demarche which is the 
process patterns of our patterns system and the 
models that are the product patterns. In this section, 
we briefly present the last component, namely, the 

PDPR-tool. Then, we proceed to illustrate the 
proposed method (PDPR system, PDPR-tool) 
through a case study of a dynamically adaptive 
image processing application. The features of the 
PDPR-Tool are intended to the DPR engineer 
(reconfiguration engineer) and the PDPR system 
engineer. The features are illustrated in figure 4.  

 

Figure 4: Actors features of PDPR-Tool. 

The demonstration is based on a dynamically 
reconfigurable FPGA and an input/output video. We 
present the PDPR-Tool through a video streaming 
consisting of two tasks, executed in sequence. The 
first task is named Binarization, which is used to 
binarize the values of an image and produce a binary 
image. The second task named Inversion is used to 
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invert the resulting binary image of the binarization 
task. The example is illustrated in figure 5. 

 

Figure 5: Demonstration Example. 

The DPR engineer begins by specifying some values 
of the criteria according to his needs. The PDPR-
Tool automatically combines the selected values of 
the tests with the values of the unspecified one. 
Therefore, we obtain the possible demarches that 
will be saved in a database and displayed on the 
interface of the PDPR-Tool. The designer, then, 
chooses the right demarche from the interface. The 
PDPR-Tool generates the corresponding process 
pattern (s). The designer (DPR engineer) can view 
them as an activity diagrams form. The process 
pattern leads to the product pattern (s). The obtained 
product patterns for our example are "APDPR: Data-
exchange" and "B-PDPR:Follow-behavior". The 
next step is the instantiation of the model solution.  

Figure 6 and figure 7 show the instantiation and 
the validation of the "APDPR:Data-exchange" 
pattern : The Inversion task launches the 
communication and requests bitstreams for its 
execution. It sends a request via its output port (out) 
and receives a response via its input port (in). The 
Binarization task receives the request through its 
input port (in), handle the request and returns the 
result to the client task via its out port. The 
Binarization task is responsible for providing the 
necessary data that the client task needs. The 
communication connectors receive requests from the 
client task via the input port (in) and return the 
request to the server task via the out port. 

 

Figure 6: Instanciation of "A-PDPR: Data-exchange" 
pattern. 

Figure 8 and figure 9 show the instantiation and the 
validation of the "B-PDPR:Follow-behavior" pattern 
for our example. Only one ModeBehavior is defined 
and dedicated to the behavior of the Binarization 
task which is the reconfigurable task (task state 
criteria = dynamic.), in our example. Transitions that 
make the passage from one mode to another are 
stereotyped with the MARTE:ModeTransitions. The 
events are Reconfigure2S1 and Reconfigure2S2. We 
have defined two implementations (Threshold 1, 
Threshold 2) for the Binarization task. Each defined 
implementation is attached to one mode (S1, S2). 

 

Figure 7: Validation of "A-PDPR: Data-exchange" pattern. 

 

Figure 8: Instanciation of "B-PDPR: Follow-behavior" 
pattern. 

 

Figure 9: Validation "B-PDPR: Follow-behavior" pattern. 
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5 CONCLUSIONS AND FUTURE 
WORK 

This paper deals with the high abstraction level 
design of the DP-RTE systems using a patterns 
system that allows generating model solutions. Our 
method focuses on the application part in the DPR 
design flow. It allows reusing recurrent application 
models and sharing experience-owned knowledge. 
We have proposed patterns that limit the vocabulary 
of the UML/MARTE and identify the essential 
concepts for the specification of the model solutions. 
Our method enables the DPR to be processed very 
early in the design flow, in contrast to the Xilinx 
flow that only offers it during the phase of 
placement of the reconfigurable zones on FPGA. 
Indeed, since the creation of the application model, 
the concepts of MARTE have enabled to define 
what the reconfigurable tasks are. Our method was 
illustrated on a concrete example of an image 
processing application, starting with the modeling of 
the patterns system until the instantiation and the 
implementation of the patterns.  

In our future works, we plan to complete and 
validate the specifications of the patterns system. 
This refers to the refinement of the classification 
criteria as well as the proposed product and the 
process patterns. Then, we intend to integrate the 
proposed patterns in an MDE-based approach for the 
automatic generation of DP-RTE systems. Similarly, 
we seek in our future work, to apply the models 
@runtime (Thomas et al., 2011) on the adaptation 
process design of the DP-RTE systems to solve a 
particular problem related to the complexity and the 
wealth of the information associated with the 
execution. This is useful to check the designer’s 
needs and the non-functional properties, support 
dynamic behavior monitoring and fix the errors 
during the execution.  
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