
Patterns System for the Design of Partial Reconfigurable
Applications on FPGA

Nissaf Fredj1, Mhamed Saidane2, Yessine Hadj Kacem3 and Mohamed Abid4

1ISITCOM, CES Laboratory, ENIS, Sfax, Tunisia
4CES Laboratory, ENIS, Sfax, Tunisia

2TIM Laboratory, Monastir, Tunisia
3College of Computer Science, King Khalid University Abha, Saudi Arabia

Keywords: DPR, Patterns System, Behavioral Pattern, Architectural Pattern, DP-RTE Systems.

Abstract: During the last few years, the Dynamic Partial Reconfiguration (DPR) has been introduced to the embedded
systems as a key technique that aims at improving the flexibility of Field-Programmable Gate Array
(FPGA)-based system reconfiguration. However, the design of these systems is a hard task using low-level
functions where the design of the hardware side precedes that of the software. Recently, Model-Driven
Engineering (MDE) based approaches have emerged. They aim at simplifying the modeling of the
dynamically set systems and keep a design flow where DPR application and architecture are designed in
parallel. In fact, there is a lack of reusable and generic models that allow the improvement of the designers’
task and the decrease of the development costs. In order to overcome these issues we propose in this paper
an additional featuring or abstraction level in the DPR design flow introduced by these approaches. Our aim
is to suggest for designers a method (process and models) which allows reusing recurrent application
models and sharing experience-owned knowledge. The proposed method is a patterns system which is a
combination of architectural and behavioral patterns dedicated to the Dynamic Partial reconfigurable Real-
Time Embedded (DP-RTE) systems.

1 INTRODUCTION

The real-time embedded systems have become so
useful in our life. They are mainly related to the
image and signal processing applications in which a
significant quantity of data is regularly processed
through repetitive calculations. Embedded systems,
and particularly DP-RTE systems, are more complex
and challenging to develop compared to software
systems. In addition to requiring high computing
power at considerable speeds, they are subject to a
multitude of constraints such as resource limitations
and execution time (Henzinger et al., 2007). The
growing complexity and the high design costs of
these systems pushed the designers to apply the DPR
technique. Indeed, a DP-RTE system offers a high
functional flexibility while maintaining good
performance (Marques, 2012). These systems can be
reconfigured for an unlimited number of times. They
offer the ability to add new features and make
changes to the system after its creation. However,
the design of such systems has become an expensive
task in terms of time. It also requires a broad

knowledge of the technical details of the target
platforms. Facilitating the work of DP-RTE systems
designers and reducing the development costs and
time, is a major challenge in this field. In response to
these issues, several high-level design approaches
(Beux, 2007) (Ochoa-Ruiz et al., 2012) have been
emerged: It is a high-level co-design under the Y-
model where the application and the architecture are
designed in a parallel way. The development offers
for designer’s flexibility, reusability and automation
as well as it hide technical details. It is based on
MDE (Schmidt, 2006) and MARTE (OMG, 2011)
(Modeling and Analysis of Real-Time and
Embedded Systems) profile. Nevertheless, there is a
lack of reusable and generic models that speeding
and facilitating the reuse of these complex systems.
A pattern presents an applied solution to share
experience owned knowledge and generic terms to
obtain fast and widely used designs (Gamma et al.,
1995). However, most of the research studies based
on pattern solution are oriented towards software
systems. Furthermore, they do not deal with DP-
RTE system development and ignore important

Fredj, N., Saidane, M., Kacem, Y. and Abid, M.
Patterns System for the Design of Partial Reconfigurable Applications on FPGA.
DOI: 10.5220/0006383503250335
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 325-335
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

325

adaptation proprieties of these systems.
In this paper, we propose a new method for the

DP-RTE systems design under the Y-model. Our
contribution is formalized as a patterns system
formed with process patterns that present fragments
of demarches based on proposed criteria to assist
and guide the designer to product patterns. Our
objective allows DPR designers to reuse recurrent
solutions that have been validated by experience and
handle the real-time features of the DPR process.
This work is characterized by a new novelty which
is the description of the proposed patterns using
MARTE profile. Using a rich terminology for the
specification and analysis of embedded systems,
MARTE enables a joint design of the hardware and
software parts of embedded systems.

This paper is organized as follows: the second
section summarizes the work on the high-level
design of dynamically reconfigurable systems and
the pattern-based adaptation. The proposed patterns
system is presented in the third section and it will be
illustrated by a case study in the fourth section.
Finally, the last section is dedicated to conclude the
paper and present our future work.

2 RELATED WORKS

2.1 High Level Design of DPR

Several approaches have investigated the design of
DPR process such as the design of the
reconfigurable application. This design has been
evolved from one work to another through the
tagged design flow. Previously proposed solutions
were mainly based on the MDE approach. The main
contributions in (Cherif, 2013) are the modeling of a
deployment level, a physical platform and a control
level. The design flow is inspired by GASPARD’s
work (Gamatie et al., 2008). This flow begins with a
joint modeling of the application and the architecture
as well as the mapping between them. Next, the
authors in (Cherif, 2013) proposed an
UML/MARTE design flow for the automatic
generation of RTL code to be implemented on
dynamically reconfigurable FPGAs. They added to
the MARTE profile a set of stereotypes such as the
ReconfigurableRtUnit stereotype to model the
reconfigurable tasks of applications in the DPR
process on Xilinx FPGAs. Other approaches, which
have addressed the modeling of reconfiguration
control, have been integrated into GASPARD
project. First results in (Cherif et al., 2011) proposed
a high level modeling of a distributed modular

controller to manage the reconfiguration in FPGAs.
The MARTE profile- based approach was improved
by (Chiraz, 2012) to model the semi-distributed
control as a set of distributed modular controllers
which performs the observation, decision-making,
reconfiguration tasks and coordination between
distributed controller-made decisions. This
Modeling aims at respecting global constraints and
system objectives. Moreover, the authors in (Quadri,
et al., 2010) developed a co-design approach for Soc
(System on chips), in the GASPARD framework.
The work made the automation of code generation
from high-level MARTE models. Indeed, they use
an intermediate level which provides different
mechanisms to link the low level of implementation
with high-level models. Furthermore, the authors
extended the MARTE profile with a set of concepts
to specify the DPR in modern FPGAs.

All the approaches described above are
beneficial because they facilitate and fix the
development of dynamically reconfigurable systems.
However, they have some deficiencies. First,
proposed solutions depend on the hardware platform
as they are based on specific concepts and low-level
models that describe the Xilinx design methodology.
These approaches are only interested in the
modeling without addressing the actual DPR process
behind monitoring features, reconfiguration
decisions and system features management. Then,
these studies do not provide support for the
evaluation and validation of real-time constraints
and resources. Finally, they are not generic enough
because they handle specific reconfiguration
problems which prevent their reusability from being
adapted to the new requirements and constraints of
the system. The development of design patterns is a
promising alternative approach to deal with the latest
problem. A pattern favors the extensibility and reuse
of design and gives an abstraction view of a
recurring problem.

2.2 Patterns based Adaptation

In literature, there are few works that have presented
patterns for the adaptation of embedded systems.
Regarding the software architecture design, Gamma
and al in (Gamma et al., 1995) proposed a design
patterns that define the running of application and
aim at specifying a dynamic behavior for predefined
types of software architectures which are the
master/slave, centralized, decentralized, client/server
architectures. The contributions of (Schmidt et al.,
2000) are the basis of a pattern language that handles
problems related to concurrency and networking.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

326

The proposed patterns consist in defining a service
provided by a middleware and then specifying a
generic implementation of this service. In (Corsaro
et al., 2002), the author proposed a Virtual
component pattern that allows the developers of
middleware to have a large set of functionalities to
their users. The suggested pattern, which permits the
adaptation of a distributed application to the
embedded systems’ memory constraints, has been
applied in a variety of middleware, such as the JVM
(Java virtual machines).

Most of the previously described works proposed
pattern solutions that are oriented software system
design. Some of these works describe the embedded
systems design but they ignored the hardware side
which is as essential as the software. Furthermore,
these latter didn’t deal with real time characteristics
of the system adaptation. In (Said et al., 2014), the
authors proposed a pattern-based specification for
adaptive embedded systems. They have developed
patterns for the MAPE (Monitor, Analyzer, Plan and
Execute) adaptation (Chess, 2003) loop which
consists of four adaptation modules. Separately in
other contexts, these modules allow the promotion
of their reuse. They also promote reusability and
modularity designs. The patterns take into account
the management of adaptation performance as well
as the evaluation of real time characteristics of
adaptation modules which are important in the
modeling the embedded systems. This work
proposed behavior patterns of the adaptation
process; however, it is not concerned with the
architecture of adaptation process which is hidden
behind the adaptable components and the
communication activity between them.

In this state of the art, we are discussing the
studies that present approaches to DPR process
design and the modeling of adaptation process using
patterns. The main contribution of these studies is a
high-level modeling of DPR using MDE based
approach under MARTE profile to both guarantee
abstraction and automation. In the following, we
present our contribution which is built on a new
pattern-based design flow that will be the subject of
the next section.

3 THE PROPOSED PATTERNS
SYSTEM

Before going on to explain the contributions of our
method, we begin by presenting the pattern concept:
According to (Buschmann et al., 1996), it is a

template which is seen as a normative model to be
copied or used. There are dependency relationships
between patterns. These relations form a system that
connects the different consecutive patterns. As
reported by (Buschmann et al., 1996), a patterns
system is a collection of patterns accompanied by a
guide for their implementation, use and
combination. The patterns must be weaving together
in a cohesive whole that shows the inherent
structures and relationships in each of its
components to achieve a common goal. In the case
of a complex system with tens patterns, it is
necessary to have classification criteria.

Our approach focuses on the application part in
the DPR design flow (Cherif, 2013). The method is
formalized as a patterns system called PDPR
(Patterns for Dynamic Partial Reconfiguration)
dedicated to the DP-RTE systems; it is illustrated in
figure 1. Our goal is to provide the designers with a
method (process and models) to reuse recurrent
application models and share experience-owned
Knowledge. The system is composed of process
patterns (step 2 in figure 1) and product patterns
(step 3 in figure 1).

Figure 1: The Proposed PDPR system for DPR design
flow.

The process pattern proposes to the designer a
demarche to navigate the collection of the proposed
product patterns and choose the best one that meets
his needs through classification criteria (step 1 in
figure 1). The product patterns allow the
capitalization and reuse of model solutions.
Absolutely, the model solution is composed of two
types of product patterns: First, the patterns for DPR
architecture (A-PDPR: Architectural Pattern for
Dynamic Partial Reconfiguration) which represent
the components of the system to be reconfigured as
well as the communication between them. Second,

Patterns System for the Design of Partial Reconfigurable Applications on FPGA

327

the patterns for the behavior of DPR (B-PDPR:
Behavioral Pattern for Dynamic Partial
Reconfiguration) that describe the reconfiguration
engine process of these components. In what
follows, we will present the three steps of our
method: we begin by listing the proposed
classification criteria. In step 2 (see Section 3.2) and
step 3 (see Section 3.3), we present the different
patterns of the PDPR system under the P-sigma
formalism (Schmidt et al., 2000).

The main rubrics used are identifier, problem,
solution, application, use, require. The rubric use
and require expresses the dependency relationship
between the different patterns of the PDPR system.

3.1 Step 1: Classification Criteria

In a DP-RTE system, an application is a set of tasks
communicating with one other. We define an initial
list of criteria to characterize tasks and
communication between them. These criteria
subsequently facilitate the search and selection of
the product pattern that meets the designer’s needs.
These criteria are the synthesis of our study of the
art.
 Action type: We can distinguish three types of

actions (see figure 2) sent by a task: (1) Signal
send: The signals are equivalent to global
variables ensuring communication between the
real-time units. (2) Function call: Functions are
blocks of instructions that return a value. (3)
Data exchange: A task can communicate with
another to send or receive data. These three types
of actions can invoke a DPR process (Marques,
2012) in the system.

 Task State: In a DP-RTE system and during a
DPR process, we distinguish two kinds (Cherif,
2013) of tasks under their states. A static task
always handles the same algorithm and sends the
resulting data to the same task with which it
communicates. For some input data, the
calculation to be carried out is always the same
regardless of the previous data or the change of
environment. A dynamic task is characterized by
a behavior that varies due to external factors. In
other words, it is adapted to the environment.

 Synchronization: Communication between two
real-time units (tasks) can be carried out in
different modes: (1) the synchronous mode
where the task waits for the end of the client
task’s execution before proceeding. (2) The
asynchronous mode where the task does not wait
for the execution of the client task.

Figure 2: Action type criteria.

 Type of communication (exchange): We present
three types (Marques, 2012) of communication.
(1) A point-to-point communication between
only two tasks at the same time. (2) A multipoint
exchange, where the sender task sends the
message simultaneously to a limited number of
tasks that requested an exchange. (3) A broadcast
(diffusion) communication, where the sender
task sends the message simultaneously to all the
tasks participating in the communication whereas
those that are not concerned with ignore it.

 Direction of Communication: The exchange
between two tasks can be unidirectional or
bidirectional.

In our patterns system, the values of such previously
presented criteria change from one product pattern to
another like a set of constraints which are expressed
using OCL Language (Group, 2003). The
corresponding constraints are shown in see table 2
and table 5.

3.2 Step 2: Process Patterns

As already mentioned, the PDPR system consists of
a set of process patterns that guide the designer to
search and select one of the proposed product
patterns. The entry process pattern to the PDPR
system is named Input-PDPR which coordinates the
use of other process patterns. The navigation in the
different process patterns is carried out using the
previously described criteria. Each process pattern
proposes a fragment of demarche and orients the
designer to a process or product pattern in the
patterns system. The different process patterns are
represented as an activity diagram. In what follows,
one example of process patterns will be presented in
table 1.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

328

Table 1: "PDPR: Exchange-Synchronous" process pattern.

Identifier PDPR: Exchange-synchronous

Context This pattern requires the use of the Input-PDPR pattern.

Problem Orients the designer when the type of synchronization between tasks is synchronous.

Demarche Solution A simultaneous connection can only be bidirectional. This connection leads to two types of
patterns, depending on the action type criteria: When the action type is a call/signal exchange.
The designer is oriented towards two types of product patterns: The "A-PDPR: Signal-send"
pattern or the "A-PDPR: Function-call" pattern. When the action type is a data exchange, the
designer is oriented to the "A-PDPR: Data-exchange" pattern.
Such patterns are not defined at this level.

Use A-PDPR:Signal-send, A-PDPR:Function-call and A-PDPR:Data-exchange pattern.

Require Input-PDPR pattern.

3.3 Step 3: Product Patterns

The product patterns of the PDPR system provide a
level of abstraction that allows the DPR designers to
reason about the general behavior of an application
without giving the details of implementation. They
propose a double description: An architectural
description that describes the structure of the
application, which includes the tasks and
interactions between them, and a behavioral
description that follows and organizes the behavior
of the tasks in collaboration. The patterns of the
PDPR system are based on the combination of
formal and semi-formal languages. The joint use of
UML/MARTE and OCL to specify the model
solution of the product patterns makes it possible to:
increase the reuse of the proposed patterns, facilitate
the understanding of the overall architecture and
specify the constraints that allow controlling its
reuse and its adaptation. The five proposed product
patterns are illustrated respectively by table 2, table
3, table 4, table 5 and table 6.

3.4 Extensible Patterns System

The classification criteria and the demarches allow

guiding the designer (DPR engineer) in his choice of
the most appropriate model solution. Once he has
chosen his demarche, the designer may be
confronted with two situations (see figure 3) : (1)
The configuration demarche leads to various models
(product pattern): In this case, the reconfiguration
(DPR) engineer can suggest to the patterns system
(PDPR) engineer the addition of one or several
criteria in order to distinguish between two
neighboring demarches. This implies the addition of
new demarches and the update of the different
process patterns constituting it.

(2) The product pattern is not adequate to the
engineer application’s needs: It is necessary to
elaborate a new product pattern representing the
expected model solution. The application engineer
can also propose new criteria to differentiate his
architecture from that proposed to him. The figure
illustrates the set of steps that the reconfiguration
engineer and the patterns engineer must follow.
The next section is devoted to the instrumentation
and the validation of the proposed PDPR system in a
concrete example.

Patterns System for the Design of Partial Reconfigurable Applications on FPGA

329

Table 2: "B-PDPR:Follow-behavior" product pattern.

Identifier B-PDPR:Follow-behavior

Context If the task state is dynamic.

Problem The pattern is applied when the designer wants to change the behavior of a dynamic task in the
DPR process. It intercepts his behavior over the time and informs the rest of the application
about his new state.

Model Solution Compared to the patterns presented by the research studies [(Buschmann et al., 1996), (Schmidt
et al., 2000), (Corsaro et al., 2002)], this pattern is dedicated the DP-RTE systems adaptation
behavior and deals with real-time proprieties of these systems. A task is stereotyped with
MARTE:RtUnit and MARTE:ResourceUsage concepts. The ResourceUsage provides a set of
non-functional properties representing the consumed values of the resources. A task class
defines a method evaluate () that checks whether a non-functional property has been optimized
during a DPR process, the evaluation is based on minimum and maximum values. A non-
functional property to be evaluated by this pattern is the consumed energy which is stereotyped
with MARTE:NFP concept.

The pattern is based on: (1) State interface which is stereotyped with MARTE:Mode
concept, defines the behavior that specifies a set of mutually exclusive modes. (2) Concrete
states (state-1, state-2) which implement the behaviors. (3) Context (Current-behavior) which is
stereotyped with MARTE:ModeBehavior concept, stores the current state and calls the
corresponding behavior.

Application example

A filter task can be in two different states: color or black and white. When a filter task receives
requests from other tasks, it responds differently according to his current state. The pattern
describes how the filter task behaves differently in each state. The key idea of this pattern is to
introduce a Filter-state abstract class to represent the states of the filter. It declares a common
interface to all the classes representing the different operating states. The sub-classes of Filtre-
state implement specific behaviors. For example, the Color and BlackAndWhite classes
implement a particular behavior for the color and the black and white states of the filter task.

Use A-PDPR:Signal-send, A-PDPR:Function-call and A-PDPR:Data-exchange pattern.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

330

Table 3: "B-PDPR:Abstract-behavior" product pattern.

Identifier B-PDPR:Abstract-behavior

Context If the task state is dynamic.

Problem The pattern is applied to a dynamic task in the DPR process, is used when a task has different
behaviors. The pattern mainly seeks to separate the main class from its behaviors (algorithms) by
encapsulating them into different classes.

Model Solution This pattern which is dedicated to the DP-RTE system adaptation behavior, deals with the real
time proprieties of these systems. A task is stereotyped with MARTE:RtUnit and
MARTE:ResourceUsage concepts. It may have one or more behaviors. The class task maintains a
reference to abstract behavior. It is configured with a concrete algorithm. A behavior is
stereotyped with MARTE:ModeBehavior concept. A non-functional property to be evaluated by
this pattern is the consumed energy which is stereotyped with MARTE:NFP concept. The class
Abstract-behavior which is the standard interface of all algorithms is used by a task to call a
particular algorithm. The classes Behavior-A, Behavior-B are specific algorithms.

Application
example

Filtering strategies are not implemented by the Filter class but by the subclasses of the Algorithm-
filter abstract class. The subclasses use different algorithms: Low-pass filter, High-pass filter and
Band-pass filter. A Filter task preserves a reference to an Algorithm-filter object. When a filter
task is executed, it passes the responsibility to its Algorithm-filter object which specifies the
algorithm that must be used.

Use A-PDPR:Signal-send, A-PDPR:Function-call and A-PDPR:Data-exchange pattern.

Table 4: "A-PDPR:Function-call" product pattern.

Identifier A-PDPR:Function-call

Classification call/signal AND (synchronous OR asynchronous) AND bidirectional AND (point-to-point OR
multipoint)

Problem Compared to the patterns presented by the research studies [(Buschmann et al., 1996), (Schmidt
et al., 2000)] which are software-oriented systems design, this pattern is dedicated to the DP-RTE
systems adaptation architecture. In these systems, a function call can trigger a DPR process. This
pattern is dedicated to the communication between tasks by calling functions. The sender task
may or may not wait for the response of the receiver before continuing its execution. However, it
must receive a response; hence the sense of communication is necessarily bidirectional. The
communication is either synchronous or asynchronous. A component can call one component or
several; so the type of communication is either point-to-point or multipoint.

Patterns System for the Design of Partial Reconfigurable Applications on FPGA

331

Table 4: "A-PDPR:Function-call" product pattern (cont.).

Model Solution A task is stereotyped with MARTE:RtUnit. The calling task sends a call via a connector through
a specific required port which is stereotyped with MARTE:ClientServerPort. This port allows
passing a call that is forwarded to the other task that responds via the provided port kind. A
calling task can be modified or removed from the configuration after completing the request it
initiated. A called task can be modified or deleted after processing the query.

Use B-PDPR:Follow-behavior, B-PDPR:Abstract-behavior patterns

Table 5: "A-PDPR:Signal-send" product pattern.

Identifier A-PDPR: Signal-send

Classification call/signal AND (synchronous OR asynchronous) AND (bidirectional OR unidirectional) AND
(point-to-point OR multipoint OR diffusion)

Problem This pattern is dedicated to the design of DPR process architecture which is based on sending
signals. A signal can trigger a DPR process. The components of this pattern are the client that
publishes a signal and the server that consumes it. The type of communication is multipoint,
diffusion or point-to-point. The communication between the tasks can be synchronous or
asynchronous. The direction of communication is bidirectional, but it can also be unidirectional.

Model Solution The signal exchange is passed via a connector port. The client issues a signal via the required
port kind. The server consumes the signal via the provided port. A task is stereotyped with
MARTE:RtUnit and the port with MARTE:ClientServerPort which allows passing a signal. A
client task can be modified or removed from the configuration after completing the request it
initiated. A server task can be modified or deleted after processing the query. The basis of this
pattern is to delete, add or modify a task.

Use B-PDPR:Follow-behavior and B-PDPR:Abstract-behavior pattern

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

332

Table 6: "A-PDPR:Data-exchange" product pattern.

Identifier A-PDPR: Data-exchange

Classification Data AND (synchronous OR asynchronous) AND bidirectional AND(point to point OR
multipoint)

Problem This pattern is used to allow tasks accessing a storage system. Access is managed by a server
task. This pattern is similar to the "client/server" architecture except that the client requests a
server task for a query. The latter has the client role for the storage system. Communication is
processed either in a synchronous or an asynchronous mode, but it is always bidirectional.

Model Solution

Compared to the patterns presented by the research studies [(Buschmann et al., 1996), (Schmidt
et al., 2000)] which are software-oriented systems design, this pattern is dedicated to the DP-
RTE systems adaptation architecture. The principle of this pattern is to delete, add or modify a
task; it is used when sending data between client and server task which can be modified, deleted
or added. Communication is carried out according to a communication protocol via a connector
port. The client invokes the server through its out port. The server receives the request through
it’s IN port. A task is stereotyped with MARTE:RtUnit and the port with MARTE:FlowPort
which allows passing the data.

Use B-PDPR:Follow-behavior and B-PDPR:Abstract-behavior pattern

Figure 3: Actors features of PDPR-Tool

4 CASE STUDY

All the engineering systems are based on several
methods. C. Rolland (Roland et al., 1988) describes
one of them by defining three corresponding
components: models, demarches and tools (or
techniques). At this stage, we have addressed the
first two components, the demarche which is the
process patterns of our patterns system and the
models that are the product patterns. In this section,
we briefly present the last component, namely, the

PDPR-tool. Then, we proceed to illustrate the
proposed method (PDPR system, PDPR-tool)
through a case study of a dynamically adaptive
image processing application. The features of the
PDPR-Tool are intended to the DPR engineer
(reconfiguration engineer) and the PDPR system
engineer. The features are illustrated in figure 4.

Figure 4: Actors features of PDPR-Tool.

The demonstration is based on a dynamically
reconfigurable FPGA and an input/output video. We
present the PDPR-Tool through a video streaming
consisting of two tasks, executed in sequence. The
first task is named Binarization, which is used to
binarize the values of an image and produce a binary
image. The second task named Inversion is used to

Patterns System for the Design of Partial Reconfigurable Applications on FPGA

333

invert the resulting binary image of the binarization
task. The example is illustrated in figure 5.

Figure 5: Demonstration Example.

The DPR engineer begins by specifying some values
of the criteria according to his needs. The PDPR-
Tool automatically combines the selected values of
the tests with the values of the unspecified one.
Therefore, we obtain the possible demarches that
will be saved in a database and displayed on the
interface of the PDPR-Tool. The designer, then,
chooses the right demarche from the interface. The
PDPR-Tool generates the corresponding process
pattern (s). The designer (DPR engineer) can view
them as an activity diagrams form. The process
pattern leads to the product pattern (s). The obtained
product patterns for our example are "APDPR: Data-
exchange" and "B-PDPR:Follow-behavior". The
next step is the instantiation of the model solution.

Figure 6 and figure 7 show the instantiation and
the validation of the "APDPR:Data-exchange"
pattern : The Inversion task launches the
communication and requests bitstreams for its
execution. It sends a request via its output port (out)
and receives a response via its input port (in). The
Binarization task receives the request through its
input port (in), handle the request and returns the
result to the client task via its out port. The
Binarization task is responsible for providing the
necessary data that the client task needs. The
communication connectors receive requests from the
client task via the input port (in) and return the
request to the server task via the out port.

Figure 6: Instanciation of "A-PDPR: Data-exchange"
pattern.

Figure 8 and figure 9 show the instantiation and the
validation of the "B-PDPR:Follow-behavior" pattern
for our example. Only one ModeBehavior is defined
and dedicated to the behavior of the Binarization
task which is the reconfigurable task (task state
criteria = dynamic.), in our example. Transitions that
make the passage from one mode to another are
stereotyped with the MARTE:ModeTransitions. The
events are Reconfigure2S1 and Reconfigure2S2. We
have defined two implementations (Threshold 1,
Threshold 2) for the Binarization task. Each defined
implementation is attached to one mode (S1, S2).

Figure 7: Validation of "A-PDPR: Data-exchange" pattern.

Figure 8: Instanciation of "B-PDPR: Follow-behavior"
pattern.

Figure 9: Validation "B-PDPR: Follow-behavior" pattern.

MDI4SE 2017 - Special Session on Model-Driven Innovations for Software Engineering

334

5 CONCLUSIONS AND FUTURE
WORK

This paper deals with the high abstraction level
design of the DP-RTE systems using a patterns
system that allows generating model solutions. Our
method focuses on the application part in the DPR
design flow. It allows reusing recurrent application
models and sharing experience-owned knowledge.
We have proposed patterns that limit the vocabulary
of the UML/MARTE and identify the essential
concepts for the specification of the model solutions.
Our method enables the DPR to be processed very
early in the design flow, in contrast to the Xilinx
flow that only offers it during the phase of
placement of the reconfigurable zones on FPGA.
Indeed, since the creation of the application model,
the concepts of MARTE have enabled to define
what the reconfigurable tasks are. Our method was
illustrated on a concrete example of an image
processing application, starting with the modeling of
the patterns system until the instantiation and the
implementation of the patterns.

In our future works, we plan to complete and
validate the specifications of the patterns system.
This refers to the refinement of the classification
criteria as well as the proposed product and the
process patterns. Then, we intend to integrate the
proposed patterns in an MDE-based approach for the
automatic generation of DP-RTE systems. Similarly,
we seek in our future work, to apply the models
@runtime (Thomas et al., 2011) on the adaptation
process design of the DP-RTE systems to solve a
particular problem related to the complexity and the
wealth of the information associated with the
execution. This is useful to check the designer’s
needs and the non-functional properties, support
dynamic behavior monitoring and fix the errors
during the execution.

REFERENCES

Beux, S. L. (2007). Un flot de conception pour les
applications de traitement du signal systematique
implementees sur fpga a base d ingenierie dirigee par
les modeles. Universite des Sciences et Technologie
de Lille.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern- oriented software
architecture. Wiley.

Cherif, S. (2013). Approche basee sur les modeles pour la
conception des systèmes dynamiquement
reconfigurables: de MARTE vers RecoMARTE.
University of Science and Technology of Lille.

Cherif, S. Chiraz, T., Samy, M., and Dekeyser, J. (nov
2011). High level design of adaptive distributed
controller for partial dynamic reconfiguration in fpga.
Conference on Design Architectures for Signal Image
Processing: DASIP, pages 308–315.

Chiraz, T. (2012). Controle materiel des systemes
partiellement reconfigurables sur fpga: de la
modelisation a l implementation.

Corsaro, A., Schmidt, D. C., Klefstad, R., and ORyan, C.
(2002). Design pattern for memory-constrained
embedded applications. Proceedings of the 9th
Conference on Pattern Language of Programs.

Gamatie, A., Beux, S. L., Piel, E., Etien, A., Atitallah, R.
B., Marquet, P., and Dekeyse, J.-L. (aout 2008). A
model driven design framework for high performance
embedded systems. INRIA Journal.

Gamma, E., Helm, R., and Johnson, R. (1995). Design
patterns: Elements of reusable object-oriented
software. Addison Wesley. .

Group, O. M. (2003). UML 2.0 OCL Specification. OMG
Adopted Specification ptc/03-10-14. Object
Management Group.

Group, O. O. M. (June 2011). A UML Profile for
MARTE: Modeling and Analysis of Real-Time
Embedded systems, ptc/2011-06-02. Object
Management Group.

Henzinger, T. A. and Sifakis, J. (2007). The discipline of
embedded systems design. IEEE Society Computer.

Imran Rafiq Quadri, Abdoulaye Gamatie, S. M. J.-L. D.
H. Y. E. R. (jan 2010). Targeting reconfigurable fpga
based socs using the uml marte profile: from high
abstraction levels to code generation. INRIA Journal,
pages 308–315.

Marques, N. (2012). Methodologie et architecture
adaptative pour le placement efficace de taches
materielles de tailles variables sur des partitions
reconfigurables.

M. Chess, J. O. K. D. (2003). The vision of autonomic
computing. IEEE Computer Society. Ochoa-Ruiz, G.,
Labbani, O., Bourennane, E.-B., Soulard.

Ochoa-Ruiz G, Ouassila L, El-Bay B, Philippe S and Sana
C. (2012) A High-level Methodology for Automatically
Generating. Springer Verlag (Germany).

Rolland, C. Foucault, O. and Guillaume, B. (1988).
Conception des Systèmes d’Information – la méthode
REMORA. Editions Eyrolles.

Said, M. B., Kacem, Y. H., Kerboeuf, M., Amor, N. B.,
and Abid, M. (July 2014). Design patterns for
selfadaptive systems specification. International
Journal of Reconfigurable Computing.

Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F.
(2000). Pattern-oriented software architecture, patterns
for concurrent and networked objects, volume 2.
Wiley.

Schmidt, D. C. (2006). Model-driven engineering. IEEE
Computer, 39(2). Vogel, T., Seibel, A., and Giese, H.
(2011). The role of models and megamodels at
runtime. Springer.

Thomas V., Andreas S and Holger G. (2011). The Role of
Models and Megamodels at Runtime. Springer.

Patterns System for the Design of Partial Reconfigurable Applications on FPGA

335

