successive periods. This “two past trend” based
calibration is more likely to capture recent patterns
of change and simulations over shorter periods.
A multi-temporal approach, integrating data
about more than two training dates, could resolve
potential errors resulting from only considering two
past dates or by considering the total past, and would
be more appropriate for creating forecasting
scenarios. However, a choice must be made between
using states or transitional data in the calibration of
the models. Depending on multiple parameters,
including form and intensity of dynamics, the two
approaches may be complementary.
ACKNOWLEDGEMENTS
This work was supported by the BIA2013-43462-P
project funded by the Spanish Ministry of Economy
and Competitiveness and by the Regional European
Fund FEDER.
REFERENCES
Abuelaish, B., Camacho Olmedo, M.T., 2016. Scenario of
land use and land cover change in the Gaza Strip using
remote sensing and GIS models. Arab J Geosci (2016)
9:274.
Camacho Olmedo M.T., Paegelow M., Mas, J.F., 2013.
Interest in intermediate soft-classified maps in land
change model validation: suitability versus transition
potential. International Journal of Geographical
Information Science 27 (12): 2343–2361.
Camacho Olmedo, M.T., Pontius R.G. Jr., Paegelow M.,
Mas, J.F., 2015. Comparison of simulation models in
terms of quantity and allocation of land change.
Environmental Modelling & Software, 69 (2015):
214–221.
Clark Labs, 2016. Available from: http://www.clarklabs.org/.
Conway T.M., Wellen, C.C., 2011. Not developed yet?
Alternative ways to include locations without changes
in land use change models. International Journal of
Geographical Information Science, 25 (10): 1613–
1631.
NRC, 2013. Advancing Land Change Modeling:
Opportunities and Research Requirements. Committee
on Needs and Research Requirements for Land
Change, Modeling; Geographical Sciences
Committee; Board on Earth Sciences, and Resources;
Division on Earth and Life Studies, National Research
Council, Washington, USA.
Eastman, J.R., Solorzano, L.A., Van Fossen M.E., 2005.
Transition potential modeling for land cover change.
In: Maguire, D.J., Batty, M., Goodchild, M.F. (eds.)
GIS, spatial analysis, and modeling. Redland, CA:
ESRI, pp 357–385.
Gómez Espín, J.M., López Fernández, J.A., Montaner
Salas, M.E., (eds.) 2011. Modernización de regadíos:
Sostenibilidad social y económica. La singularidad de
los regadíos del Trasvase Tajo-Segura. Colección
Usos del agua en el territorio. Universidad de Murcia.
Spain.
Gómez, J.L., Grindlay, A. (eds.) 2008. Agua, Ingeniería y
Territorio: La transformación de la cuenca del río
Segura por la IngenieríaHidráulica. Ministerio de
Medio Ambiente, Medio Rural y Marino.
Confederación Hidrográfica del Segura. Spain.
Kolb, M., Mas, J.F., Galicia, L., 2013. Evaluating drivers
of land-use change and transition potential models in a
complex lanscape in Southern Mexico. International
Journal of Geographical Information Science
27(9):1804–1827.
Lambin, E. et al., 2001. The causes of land-use and land
cover change: moving beyond the myths. Global
Environmental Change 11(4):261–269.
Mas, J.F., Flamenco-Sandoval, A., 2011. Modelación de
los cambios de coberturas/uso del suelo en una región
tropical de México. GeoTrópico, 5(1):1–24.
Mas, J.F., Kolb, M, Paegelow, M., Camacho Olmedo,
M.T., Houet, T., 2014. Inductive pattern-based land
use / cover change models: A comparison of four
software packages. Environmental Modelling &
Software, 51(2014): 94–111.
Osorio, L.P., Mas, J.F., Guerra, F., Maass, M., 2015.
Análisis y modelación de los procesos de
deforestación: un caso de estudio en la cuenca del río
Coyuquilla, Guerrero, México. Investigaciones
Geográficas, Boletín, núm. 88:60–74.
Paegelow, M., Camacho Olmedo, M.T., 2005. Possibilities
and limits of prospective GIS land cover modeling – a
compared case study: Garrotxes (France) and Alta
Alpujarra Granadina (Spain). International Journal of
Geographical Information Science, 19 (6):697–722.
Paegelow M., Camacho Olmedo, M.T., (eds.) 2008.
Modelling environmental dynamics. Advances in
geomatics solutions. Berlin: Springer-Verlag.
Paegelow M., Camacho Olmedo, M.T., Mas, J.F., Houet.
T., 2014. Benchmarking of LUCC modelling tools by
various validation techniques and error analysis.
Cybergeo, document 701, mis en ligne le 22 décembre
2014.
Pérez-Vega, A., Mas, J.F., Ligmann-Zielinska, A., 2012.
Comparing two approaches to land use/cover change
modeling and their implications for the assessment of
biodiversity loss in a deciduous tropical forest.
Environmental Modelling & Software 29 (1):11–23.
Pontius, R.G.,Jr., Malanson, J., 2005. Comparison of the
structure and accuracy of two land change models.
International Journal of Geographical Information
Science 19:243–265.
Sangermano, F., Eastman, J.R., Zhu, H. 2010. Similarity
weighted instance based learning for the generation of
transition potentials in land change modeling.
Transactions in GIS 14(5):569–580.
Soares-Filho, B., Rodrigues, H., Follador, M., 2013. A
hybrid analytical-heuristic method for calibrating land-