Land Change Modeling Handling with Various Training Dates
Martin Paegelow
2017
Abstract
Popular modeling tools for land change simulation, especially those using Markov chains, undertake model training based only on two land use / cover (LUC) maps. This paper analyses uncertainty and potential errors caused by taking into account only two former, model known, LUC maps. This is illustrated by a simple data set of six LUC maps allowing various Markovian transition matrices; a range even larger by considering different confidence levels. Results underline the randomness in choice of only two training dates. Authors propose alternative methods to Markov chains integrating all available LUC maps in order to simulate forecasting scenarios. To do so, they incorporate all possible LUCC (land use / cover change) budgets to perform simple arithmetic combinations between the six training dates. Comparing Markov chain transitions based on two training dates and alternatively performed change rates taking into account all training dates results to important differences. This study underlines the importance of the choice of training dates during model calibration for path-dependent simulations.
References
- Aldwaik S.Z. & Pontius Jr. R.G., 2012, Intensity analysis to unify measurements of size and stationaity of land changes by interval, category, and transition, Landscape and Urban Planning 106, 103-114
- Allen T.H.F. and Starr B., 1982, Hierarchy: Perspectives for ecological complexity. University of Chicago Press. Chicago, 310 p.
- Burnicki A.C., Brown D.G. and Goovaerts P., 2007, Simulating error propagation in land-cover change analysis: The implications of temporal dependence. Computers, Environment and Urban Systems 31, 282- 302
- Camacho Olmedo M.T., Pontius Jr. R.G., Paegelow M., Mas J.F , 2015, Comparison of simulation models in terms of quantity and allocation of land change. Environmental Modelling & Software, v. 69 May 2015, p. 214-221.
- Gómez Delgado, M. and Tarantola, S., 2006, “Global sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of hazardous waste disposal site in Spain”. International Journal of Geographical Information Science, 20, 449-466.
- Hu G., Hu J., Zhang C., Zhuang L., Song J., 2003, Shortterm traffic flow forecasting based on Markov chain model. In: Intelligent Vehicles Symposium 9-11 June 2003. Proceedings IEEE, pp. 208-212.
- Jokar Arsanjani, J., 2012, Dynamic Land-Use/Cover Change Simulation: Geosimulation and Multi AgentBased Modelling, Springer Theses, Springer Verlag.
- Kim J.H., 2013, Spatiotemporal scale dependency and other sensitivities in dynamic land-use change simulations. International Journal of Geographical Information Science 27, 1782-1803
- Lee Y.J., Lee J.W., Chai D.J., Hwang B.H. and Ryu K.H., 2009, Mining temporal interval relational rules from temporal data. Journal of Systems and Software 82, 155-167
- Liu J. and Deng X., 2010, Progress of the research methodologies on the temporal and spatial process of LUCC. Chin. Sci. Bull. 55, 1354-1362
- Mas J.F., Kolb M., Paegelow M., Camacho Olmedo M.T., Houet T., 2014, “Inductive pattern-based land use/cover change models: A comparison of four software packages”. Environmental Modelling & Software, v 51 January 2014 P.94-111
- Paegelow M., Camacho Olmedo M.T., Mas J.F., Houet T., 2014, Benchmarking of LUCC modelling tools by various validation techniques and error analysis. Cybergeo, document 701, mis en ligne le 22 décembre 2014. URL : http://cybergeo.revues.org
- Pontius Jr. R.G., 2000, “Quantification error versus location error in comparison of categorical maps”. Photogrammetric Engineering & Remote Sensing, 66 (8), 1011-1016.
- Pontius Jr. R.G., Huffaker, D., Denman, K., 2004a, „Useful techniques of validation for spatially explicit land-change models”. Ecological Modelling, 179 (4), 445-461.
- Pontius Jr. R.G., Shusas E. and McEachern M., 2004b. Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems & Environment 101(2-3) p.251-268
- Pontius Jr R.G., Boersma, W., Castella, J.C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C.D., McConnell, W,, Sood, A.M., Pijankowski, B., Pidhadia, S., Sweeney, S., Trung, T.N., Veldkamp, A.T., Verburg, P.H., 2008, “Comparing the input, output, and validation maps for several models of land change”. Annals of Regional Science, 42 (1), 11-27.
- Pontius Jr. R.G. and Lippitt C.D., 2006, Can error explain map differences over time? Cartography and Geographic Information Science, 33 (2), 159-171
- Pontius JR. R.G., Gao Y., Giner N.M., Kohyama T., Osaki M. and Hirose K., 2013. Design and interpretation of intensity analysis illustrated by land change in Central Kalimantan, Indonesia. Land, 2 (3), 351-369. DOI: http://dx.doi.org/10.3390/land2030351.
Paper Citation
in Harvard Style
Paegelow M. (2017). Land Change Modeling Handling with Various Training Dates . In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS, ISBN 978-989-758-252-3, pages 350-356. DOI: 10.5220/0006385003500356
in Bibtex Style
@conference{gamolcs17,
author={Martin Paegelow},
title={Land Change Modeling Handling with Various Training Dates},
booktitle={Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS,},
year={2017},
pages={350-356},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006385003500356},
isbn={978-989-758-252-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS,
TI - Land Change Modeling Handling with Various Training Dates
SN - 978-989-758-252-3
AU - Paegelow M.
PY - 2017
SP - 350
EP - 356
DO - 10.5220/0006385003500356