Incorporating Situation Awareness into Recommender Systems
Jeremias Dötterl, Ralf Bruns, Jürgen Dunkel
2017
Abstract
Nowadays, smartphones and sensor devices can provide a variety of information about a user's current situation. So far, many recommender systems neglect this kind of information and thus cannot provide situation-specific recommendations. Situation-aware recommender systems adapt to changes in the user's environment and therefore are able to offer recommendations that are more appropriate for the current situation. In this paper, we present a software architecture that enables situation awareness for arbitrary recommendation techniques. The proposed system considers both (semi-)static user profiles and volatile situational knowledge to obtain meaningful recommendations. Furthermore, the implementation of the architecture in a museum of natural history is presented, which uses Complex Event Processing to achieve situation awareness.
References
- Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng., 17(6):734-749.
- Adomavicius, G. and Tuzhilin, A. (2008). Context-aware recommender systems. In Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 7808, pages 335-336, New York, NY, USA. ACM.
- Bouzeghoub, A., Do, K. N., and Wives, L. K. (2009). Situation-aware adaptive recommendation to assist mobile users in a campus environment. In 2009 International Conference on Advanced Information Networking and Applications, pages 503-509.
- Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331-370.
- Chen, A. (2005). Context-aware collaborative filtering system: Predicting the user's preference in the ubiquitous computing environment. In Proceedings of the First International Conference on Location- and ContextAwareness, LoCA'05, pages 244-253, Berlin, Heidelberg. Springer-Verlag.
- Ciaramella, A., Cimino, M. G. C. A., Lazzerini, B., and Marcelloni, F. (2009). Situation-aware mobile service recommendation with fuzzy logic and semantic web. In 2009 Ninth International Conference on Intelligent Systems Design and Applications, pages 1037-1042.
- Dötterl, J. (2016). Situation-aware recommender systems. Master thesis, Hannover University of Applied Sciences and Arts, Germany.
- Hanani, U., Shapira, B., and Shoval, P. (2001). Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction, 11(3):203-259.
- Harris, S., Seaborne, A., and Prud'hommeaux, E. (2013). Sparql 1.1 query language. W3C Recommendation, 21.
- Hermoso, R., Dunkel, J., and Krause, J. (2016). Situation Awareness for Push-Based Recommendations in Mobile Devices, pages 117-129. Springer International Publishing, Cham.
- Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S. (2009). Owl 2 web ontology language primer. W3C Recommendation.
- Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. (2010). Multiverse recommendation: Ndimensional tensor factorization for context-aware collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 7810, pages 79-86, New York, NY, USA. ACM.
- Lops, P., de Gemmis, M., and Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends, pages 73-105. Springer US, Boston, MA.
- Luckham, D. C. (2001). The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- Renners, L., Bruns, R., and Dunkel, J. (2012). Situationaware energy control by combining simple sensors and complex event processing. In Proceedings of the Workshop on AI Problems and Approaches for Intelligent Environments (AI@IE 2012 in conjunction with ECAI 2012), Montpellier, France, CEUR-WS.org, volume 907, pages 29-34.
- Rizou, S., Häussermann, K., Dürr, F., Cipriani, N., and Rothermel, K. (2010). A system for distributed context reasoning. In 2010 Sixth International Conference on Autonomic and Autonomous Systems, pages 84-89.
- Schelter, S. and Owen, S. (2012). Collaborative filtering with apache mahout. Proc. of ACM RecSys Challenge.
- Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Adv. in Artif. Intell., 2009:4:2-4:2.
- World Wide Web Consortium (2014). Rdf 1.1 primer.
- Ye, J., Dobson, S., and McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive Mob. Comput., 8(1):36-66.
Paper Citation
in Harvard Style
Dötterl J., Bruns R. and Dunkel J. (2017). Incorporating Situation Awareness into Recommender Systems . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-248-6, pages 676-683. DOI: 10.5220/0006385106760683
in Bibtex Style
@conference{iceis17,
author={Jeremias Dötterl and Ralf Bruns and Jürgen Dunkel},
title={Incorporating Situation Awareness into Recommender Systems},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2017},
pages={676-683},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006385106760683},
isbn={978-989-758-248-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Incorporating Situation Awareness into Recommender Systems
SN - 978-989-758-248-6
AU - Dötterl J.
AU - Bruns R.
AU - Dunkel J.
PY - 2017
SP - 676
EP - 683
DO - 10.5220/0006385106760683