Incorporating Situation Awareness into Recommender Systems

Jeremias Dötterl, Ralf Bruns, Jürgen Dunkel

2017

Abstract

Nowadays, smartphones and sensor devices can provide a variety of information about a user's current situation. So far, many recommender systems neglect this kind of information and thus cannot provide situation-specific recommendations. Situation-aware recommender systems adapt to changes in the user's environment and therefore are able to offer recommendations that are more appropriate for the current situation. In this paper, we present a software architecture that enables situation awareness for arbitrary recommendation techniques. The proposed system considers both (semi-)static user profiles and volatile situational knowledge to obtain meaningful recommendations. Furthermore, the implementation of the architecture in a museum of natural history is presented, which uses Complex Event Processing to achieve situation awareness.

References

  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng., 17(6):734-749.
  2. Adomavicius, G. and Tuzhilin, A. (2008). Context-aware recommender systems. In Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 7808, pages 335-336, New York, NY, USA. ACM.
  3. Bouzeghoub, A., Do, K. N., and Wives, L. K. (2009). Situation-aware adaptive recommendation to assist mobile users in a campus environment. In 2009 International Conference on Advanced Information Networking and Applications, pages 503-509.
  4. Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331-370.
  5. Chen, A. (2005). Context-aware collaborative filtering system: Predicting the user's preference in the ubiquitous computing environment. In Proceedings of the First International Conference on Location- and ContextAwareness, LoCA'05, pages 244-253, Berlin, Heidelberg. Springer-Verlag.
  6. Ciaramella, A., Cimino, M. G. C. A., Lazzerini, B., and Marcelloni, F. (2009). Situation-aware mobile service recommendation with fuzzy logic and semantic web. In 2009 Ninth International Conference on Intelligent Systems Design and Applications, pages 1037-1042.
  7. Dötterl, J. (2016). Situation-aware recommender systems. Master thesis, Hannover University of Applied Sciences and Arts, Germany.
  8. Hanani, U., Shapira, B., and Shoval, P. (2001). Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction, 11(3):203-259.
  9. Harris, S., Seaborne, A., and Prud'hommeaux, E. (2013). Sparql 1.1 query language. W3C Recommendation, 21.
  10. Hermoso, R., Dunkel, J., and Krause, J. (2016). Situation Awareness for Push-Based Recommendations in Mobile Devices, pages 117-129. Springer International Publishing, Cham.
  11. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S. (2009). Owl 2 web ontology language primer. W3C Recommendation.
  12. Karatzoglou, A., Amatriain, X., Baltrunas, L., and Oliver, N. (2010). Multiverse recommendation: Ndimensional tensor factorization for context-aware collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 7810, pages 79-86, New York, NY, USA. ACM.
  13. Lops, P., de Gemmis, M., and Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends, pages 73-105. Springer US, Boston, MA.
  14. Luckham, D. C. (2001). The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
  15. Renners, L., Bruns, R., and Dunkel, J. (2012). Situationaware energy control by combining simple sensors and complex event processing. In Proceedings of the Workshop on AI Problems and Approaches for Intelligent Environments (AI@IE 2012 in conjunction with ECAI 2012), Montpellier, France, CEUR-WS.org, volume 907, pages 29-34.
  16. Rizou, S., Häussermann, K., Dürr, F., Cipriani, N., and Rothermel, K. (2010). A system for distributed context reasoning. In 2010 Sixth International Conference on Autonomic and Autonomous Systems, pages 84-89.
  17. Schelter, S. and Owen, S. (2012). Collaborative filtering with apache mahout. Proc. of ACM RecSys Challenge.
  18. Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Adv. in Artif. Intell., 2009:4:2-4:2.
  19. World Wide Web Consortium (2014). Rdf 1.1 primer.
  20. Ye, J., Dobson, S., and McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive Mob. Comput., 8(1):36-66.
Download


Paper Citation


in Harvard Style

Dötterl J., Bruns R. and Dunkel J. (2017). Incorporating Situation Awareness into Recommender Systems . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-248-6, pages 676-683. DOI: 10.5220/0006385106760683


in Bibtex Style

@conference{iceis17,
author={Jeremias Dötterl and Ralf Bruns and Jürgen Dunkel},
title={Incorporating Situation Awareness into Recommender Systems},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2017},
pages={676-683},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006385106760683},
isbn={978-989-758-248-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Incorporating Situation Awareness into Recommender Systems
SN - 978-989-758-248-6
AU - Dötterl J.
AU - Bruns R.
AU - Dunkel J.
PY - 2017
SP - 676
EP - 683
DO - 10.5220/0006385106760683