Tonelli-Shanks and Doliskani & Schost methods
using several random tests. The hardware
implementation uses different types of multipliers
including loop, Karatsuba, and interleaved
multipliers. The experimental results show that our
method outperforms the Tonelli-Shanks method over
GF (2
m
) in terms of the required resources and
frequencies using several polynomial degrees.
ACKNOWLEDGEMENTS
This work is supported by the Deanship of Research
at Jordan University of Science and Technology grant
number 20160227/89-2016.
REFERENCES
Atkin, A. & F.Morain, 1993. Elliptic curves and primality
proving. Math. Comput, 61(203), pp. 29-68.
Barreto, P. S. L. M. & Voloch, J. F., 2006. Efficient
Computation of Root in Finite Fields. Designs, Codes
and Cryptography, 39(2), pp. 275-280.
Bitzinger, R. & Vlavianos, H., 2016. Emerging Critical
Technologies and Security in the Asia-Pacific. 1st ed.
s.l.:Palgrave Macmillan.
Boneh, D. & Franklin, M., 2003. Identity-Based Encryption
from the Weil Pairing. SIAM J. of Computing, 32(3),
pp. 586-615.
Bryen, S. D., 2015. Technology Security and National
Power: Winners and Losers. 1st ed. s.l.:Transaction
Publishers.
Che Wun Chiou, C.-Y. L. J.-M. L. Y.-C. Y. H. W. C. & Lin,
L.-C., 2015. Digit-Serial Systolic Karatsuba Multiplier
for Special Classes over GF(2m). Journal of
Computers, 26(1), pp. 40-57.
Cipolla, M., 1903. Un metodo per la risolutione della
congruenza di secondo grado. Rendiconto
dell’Accademia Scienze Fisiche e Matematiche, 9(3),
pp. 154-163.
D. Hankerson, A. M. & Vanstone, S., 2004. Guide to
elliptic curve cryptography. In: New York: Springer-
Verlag.
D. Narh Amanor, C. P. J. P. V. B. & Schimmler, M., 2005.
Efficient hardware architectures for modular
multiplication on FPGAs. s.l., International Conference
on Field Programmable Logic and Applications, pp.
539-542.
Doliskani, J. & Schost, É., 2014. Taking roots over high
extensions of finite fields. Mathematics of
Computation, Volume 83, pp. 435-446.
ElGamal, T., 1985. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Trans. Inform. Theory 31, Issue 4, pp. 469-472.
Feng Wang, Y. N. & Morikawa, Y., 2005. A high – speed
square root computation in finite fields with application
to elliptic curve cryptography. Mem Fac Eng Okayama
Univ, Volume 39, pp. 82-92.
Galbraith, S., Paulus, S. & Smart, T., 2003. Arithmetic on
superelliptic curves. Mathematics of Computation,
32(237), pp. 393-405.
Gathen, J. v. z. & Shokrollahi, J., 2005. Efficient FPGA-
based Karatsuba multipliers for polynomials over F2.
s.l., Proc. 12th Workshop on Selected Areas in
Cryptography (SAC 2005),, pp. 359-369.
I. Blake, G. S. & Smart, N., 1999. Elliptic curves in
cryptography, Cambridge: Cambridge University
Press.
IEEE, 2002. Standard specifications for public-key
cryptography. [Online]
Available at: http://grouper.ieee.org/groups/1363/
[Accessed July 2016].
Karatsuba, A. & Ofman, Y., 1963. Multiplication of
Multidigit Numbers on Automata. Soviet Physics-
Doklady, 7(7), pp. 595-596.
L.M. Aldeman, K. M. & Miller, G., 1977.
On taking root in
finite fields. Providence, RI, Proc. 18-th IEEE
Symposium on Foundations of Computer Science.
Lehmer, D., 1969. Computer technology applied to the
theory of numbers. Number Theory, Math. Assoc.
Amer, p. 117–151.
Menezes, A. J., 1993. Elliptic Curve Public Key
Cryptosystems. Volume 234, pp. 14-128.
N. Nishihara, R. H. & Sueyoshi, Y., 2009. А remark on the
computation of cube root in finite fields. [Online]
Available at: http://eprint.iacr.org/2009/457.pdf
[Accessed June 2016].
NTL, 2016. NTL: A Library for doing Number Theory.
[Online]
Available at: http://www.shoup.net/ntl/
[Accessed July].
Ozdemir, E., 2013. Computing Square Roots in Finite
Fields. TRANSACTIONS ON INFORMATION
THEORY, 59(9), pp. 5613-5615.
Rodriguez-Henriquez, F. & Koc, K., 2003. On Fully
Parallel Karatsuba Multipliers for GF(2m). s.l., Proc.
Int’l Conf. Computer Science and Technology (CST
2003), p. 405–410.
Shanks, D., 1973. Five number-theoretic algorithms.
Winnipeg, Man, Congressus Numerantium.
Tonelli, A., 1891. Bemerkung über die Auflösung
quadratischer Congruenzen. Göttinger Nachrichten, pp.
344-346.
Z. Cao, Q. S. & Fan, X., 2011. Adleman-Manders-Miller
root extraction. [Online] Available at:
http://arxiv.org/abs/1111.4877 [Accessed June 2016].