
On Obfuscating Compilation for Encrypted Computing

Peter T. Breuer1, Jonathan P. Bowen2, Esther Palomar3 and Zhiming Liu∗,4
1Hecusys LLC, Atlanta, GA, U.S.A.

2London South Bank University, London, U.K.
3Birmingham City University, Birmingham, U.K.
4RISE, Southwest University, Chongqing, China

Keywords: Obfuscation, Compilation, Privacy, Encrypted Computing.

Abstract: This paper sets out conditions for privacy and security of data against the privileged operator on processors
that ‘work encrypted’. A compliant machine code architecture plus an ‘obfuscating’ compiler turns out to be
both necessary and sufficient to achieve that, the combination mathematically assuring the privacy of user data
in arbitrary computations in an encrypted computing context.

1 INTRODUCTION

A well-known argument (van Dijk and Juels, 2010)
equates privacy of user data on a computing platform
with cryptographic obfuscation (Hada, 2000) against
the privileged operator as adversary. Inputs, outputs,
and any intermediate data that may be accessible are
maintained by the processor in the user’s personal en-
cryption, or the data would intrinsically be readable
by any observer. Then privacy equates formally with
obfuscation (the argument will be set out at the start of
Section 2). Several prototype processors already sup-
port that encrypted mode of working (they will be de-
scribed in Section 3), allowing operators and operat-
ing system alike to see and manipulate user data while
keeping it in encrypted form. On such platforms, the
operators can single-step the machine, examine data
and program instructions in registers and memory,
and change anything and everything to which they
have access, copying and repeating as required, but
the unencrypted form of data is unavailable to them.

In that context, the fundamental question is whet-
her there exists a bona fide computational process that
the operator can leverage to produce encryptions of
some known numerical values with a degree of cer-
tainty. That would enable a ‘known plaintext attack’
(KPA) against the encryption. A KPA may eventually
break the encryption and make accessible the user’s
data for reading and/or subversion. On the face of it,

∗ Correspondence: Z. Liu, RISE, Southwest University,
Tiansheng Rd, Beibei, Chongqing, China

there is at least one such ‘computational process’ that
does that, because the operator ought to be able to
issue an instruction that causes the processor to sub-
tract an encrypted number from itself, yielding an en-
crypted zero with absolute certainty.

This paper examines the conditions for that to
(not) be possible. ‘Non-functional’ avenues of at-
tack via statistics of cache hits, power consumption,
etc. are preventable by engineering means and are not
considered here, but there would be in principle noth-
ing to be done about using a processor’s computing
function as a vulnerability, if such an approach could
succeed. It is argued here that a compliant machine
code architecture plus an ‘obfuscating’ compiler are
necessary and sufficient to prevent that, and our con-
tribution here is in setting out abstractly how hard-
ware, instruction set and compiler must play together
to mathematically assure the privacy and security of
data in encrypted computing.

The layout of the paper is as follows. Section 2
analyses the conditions for privacy and Section 3 dis-
cusses extant prototype processors that support en-
crypted running and satisfy the conditions of Sec-
tion 2 to varying degrees. Section 4 discusses in-
struction sets satisfying the conditions, and Sections 5
and 6 introduce obfuscating compilers. The latter sec-
tions contain the major mathematical results.

2 PRIVACY CONDITIONS

Van Dijk and Juels’ ‘well-known argument’ referred

Breuer, P., Bowen, J., Palomar, E. and Liu, Z.
On Obfuscating Compilation for Encrypted Computing.
DOI: 10.5220/0006394002470254
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 247-254
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

247

to at the start of Section 1 asks what happens when the
encrypted input data for a user’s problem and the en-
crypted code for treating it are both delivered for ex-
ecution to a virtual machine (VM) running on a plat-
form for encrypted computing. The VM should de-
crypt the data and the code, with probable hardware
assistance via instructions that physically do encryp-
tion and decryption as required, and run the code in
a private area of the processor with the data as input,
probably with interrupts disabled to prevent tamper-
ing. The results should be encrypted for return. The
question to put is: is this situation more helpful to
the hypothetical adversary than running the code on
the data on a real machine locked inside a metal safe,
with no access for operator and users alike, other than
to the (encrypted) inputs and outputs? If the answer is
‘no’, then (a) that is as good as privacy for computa-
tion can ever get, and (b) that is precisely Hada’s def-
inition for data to have been effectively cryptograph-
ically obfuscated on the processor.1 That establishes
the equivalence of obfuscation with the goal: if the
data cannot be attacked any more effectively than on
a black box implementation of the program, then the
privacy that has been achieved cannot be bettered.2

So effective obfuscation of data is what to aim for.
Reasoning about the problem begins by noting

that there are processors that already do ‘obfuscation
by design’. An example is the Ascend co-processor
(Fletcher et al., 2012), which executes code in Fort
Knox-style physical isolation, with no operator access
to it while running. The external observables, such as
power consumption, timing of I/O (including memory
accesses), cache hit/miss ratio, etc., that might leak
information via side-channels (Wang and Lee, 2006;
Zhang et al., 2013), obey statistics that are configured
beforehand and have no correlation with the running
program, apart from the run time.3 For good mea-
sure, the executable is also input in encrypted form.
Since the operator’s access to the running program is
restricted by a physical black box, the program and
data are obfuscated, by the definition given. But is ef-
fective obfuscation still possible with a less extreme

1This definition of cryptographic obfuscation follows
Hada but restricts what is of interest to data, not code.

2An argument (Barak et al., 2001) that cryptographic
obfuscation as defined by Hada is impossible in the gen-
eral case does not apply because the inputs and outputs are
encrypted here, and hardware assistance is permitted.

3A side-channel consisting of signalling via repeat ac-
cesses to the same memory location is also closed in Ascend
by the use of oblivious RAM (Ostrovsky and Goldreich,
1992), which remaps the logical to physical address rela-
tion dynamically, maintaining aliases, so access patterns are
statistically impossible to spot. It also masks programmed
accesses among independently generated random accesses.

solution, one that permits debugging, interrupt rou-
tines and system calls, for example? Here we require:

Operators and users have conventional access.

That means access to registers and memory, and the
user’s code may be single stepped, repeated, retried,
altered, etc. by the operator.

For obfuscation to go through in those circum-
stances constrains the processor hardware as follows:

(1) Each machine code instruction is a black box.

That is, individual instructions are treated as Ascend
treats a whole program at a time. Only the inputs and
outputs from each instruction are visible, in order that
they may effectively be a ‘black box’. Instructions
are executed in a processor in many stages along a
pipeline, and those intermediate stages must not be
visible. That is functionally so in any standard pro-
cessor, where interrupts are only enabled at the point
where an instruction finishes, but there must also be
no clue such as cache hit statistics or power consump-
tion data that may reveal the action of the instruction.

It is usual practice in mathematics to phrase results
in relative form. It is assumed here:

The encryption used is secure in its own right.

That is, the reasoning in this paper will suppose en-
crypted values are unreadable by an adversary. Logi-
cally they also cannot be created to order (the writer,
knowing them, could ‘read’ them too). A spy’s game
is to guess their meaning from observing or interfer-
ing with a computation; encryption is not on the line,
computation is. If the spy sees x+x and also x∗x with
identical result, the spy will deduce that x is encrypted
0, 1, or 2, and the danger is of computation leaking in-
formation on encrypted data, or subverting it.

The abstraction is realistic for one-to-many en-
cryptions of block size such that the number of in-
structions that may execute is small relative to the ex-
pected interval between cipherspace collisions.

The inputs to and outputs from each instruction
must also be in encrypted form, as in Ascend, or they
would be readable by the operator:

(2) Each machine code instruction must be observed
to read and write data in encrypted form.

Otherwise, the operator, able to single-step the ma-
chine and access registers, can read every action.

This does not mean that inputs and outputs must
be in encrypted form all the time: it suffices for the
hardware to encrypt when an instruction in privileged
mode views a processor register with user data in, for
example, or a user mode instruction writes to memory.

Beyond the above, software toolchain support is
also required, otherwise the code itself might obviate

SECRYPT 2017 - 14th International Conference on Security and Cryptography

248

all protections. A human author will write code in-
volving small numbers that can be guessed in a dictio-
nary attack. A kind of obfuscating compiler is needed
that ensures that the numbers used (encrypted) in code
and also the numbers circulating (encrypted) at run-
time have no predictable bias that can be leveraged
into an attack on the encryption.

The compiler at each recompilation of the same
program must produce an executable that in the code
and at any point in the runtime trace (the sequence of
instructions and register/memory states) has arbitrar-
ily and uniformly distributed differences in the data
values under the encryption with respect to any other
compilation. How is that compatible with producing
the same answer from the same inputs, no matter how
the source code is compiled? It is not, but so long
as the compiler agrees with or simply makes known
to the owner of the code an offset A on the input and
an offset B on the output of the intended functionality
f (x+A)+B under the encryption, then that is permis-
sible. The owner of the code must incorporate the
extra offset A before encryption of the data for execu-
tion, and remove the extra offset B after decryption of
the result. So long as A and B are independently ran-
domly generated and uniformly distributed, it follows
that the (decrypted) inputs x+A and outputs y+B are
too, no matter what biases select x and y, as required.4

Considering a single instruction with functional-
ity y← f (x) under the encryption, it must be pos-
sible for the compiler to vary the functionality to
y← f (x+A)+B without an observer telling which A
and B have been selected, so their distributions remain
unbiased with respect to the observer. That is, each
instruction must be malleable in the following sense:

(3) Each instruction supports arbitrary additions A,
B to inputs and outputs via adjustments of (en-
crypted) parameters in the instruction.

There is just one permissible exception: an instruction
that copies a value from one location to another may
do so faithfully. An observer will still not be able to
rely on any statistical bias in any particular runtime
data value, but will know that whatever it is, it is the
same as in the datum it has been copied from, if any.

We also wish to consider the situation without the
complication of imagining that the operator, acting
as adversary, can experiment by taking an encrypted
data value from a user program trace and substitut-

4An information theory argument establishes that x+A
(mod 232, say) is randomly and uniformly distributed when
A is, no matter what distribution x follows provided it is
independent of A. The argument is that A has maximal en-
tropy and x+A cannot have less entropy (Shannon), so must
have maximal entropy too, which means it takes randomly
and uniformly distributed values across the whole range.

ing it into instructions of their own devising in or-
der to test it or further modify it using the processor.
Nor should the hardware allow the encrypted con-
stants that appear in some instructions to work cor-
rectly when used as inputs for arithmetic. That makes
it impossible for the spy in the computer room to pass
the encrypted constants seen in programs through the
processor arithmetic, patching the results back into
new code snippets. So the hardware should ensure:

(4) There are no collisions between (i) encrypted con-
stants that appear in instructions and (ii) runtime
encrypted data values in registers or memory.

That has to be actively enforced in the processor. It
is not a logical consequence of assuming secure en-
cryption. It may be achieved in an implementing pro-
cessor by different padding or blinding factors for the
two domains (i-ii), checked in the processor pipeline.

The rest of this paper will use conditions (1-4) to
construct a means for obfuscation of user data.

3 SUPPORTING PLATFORMS

As remarked in Section 1, there are prototype plat-
forms that satisfy at least the conditions (1-2). Apart
from Ascend, which satisfies them trivially, there is
HEROIC (Tsoutsos and Maniatakos, 2015), a proto-
type 16-bit machine running with a deterministic Pail-
lier (2048 bit) encryption (Paillier, 1999). Its core ex-
ecutes an encrypted addition in 4000 cycles on its fun-
damentally 200MHz hardware, roughly equivalent to
a 25KHz Pentium’s speed. Instructions work on en-
crypted data, producing encrypted data.

The KPU design (Breuer and Bowen, 2014;
Breuer and Bowen, 2016; Breuer et al., 2016) gener-
alises HEROIC’s approach, achieving encrypted run-
ning by modifying the arithmetic logic unit (ALU)
for encrypted working in a roughly conventional
32/64/128-bit RISC (Patterson, 1985) processor lay-
out. The modification to the arithmetic causes data
to circulate and be processed in encrypted form. A
KPU design may embed any encryption the block size
of which matches the word size and the hardware for
which fits into reasonably many stages of a processor
pipeline. Running the US Advanced Encryption Stan-
dard (AES) 128 bit encryption (Daemen and Rijmen,
2002) in 10 pipeline stages and using a 1GHz clock it
runs at the speed of a 300-500MHz Pentium, broadly
comparable with current PCs.5 Those tests are with

5Dhrystones v2.1 rating of 104-140MIPS. A 1GHz 686
family Pentium M is rated at 420MIPS according to the ta-
ble at www.roylongbottom.org.uk/dhrystone results.htm. A
200MHz 586 family classic Pentium is rated at 48.1MIPS.

On Obfuscating Compilation for Encrypted Computing

249

contemporary 13.5ns latency memory and 3ns latency
cache. The slowdown over unencrypted running is
10-50%. Ascend, running with similar technology,
instruction set, and AES-128, slows by 12-13.5×.

The HEROIC design also satisfies condition (3).
The ‘OI’ in HEROIC stands for ‘one instruction’,
meaning that the machine code architecture has only
one kind of instruction, a combined ‘add, compare,
branch’ (that is classically computationally complete
together with recursion and at least one nonzero
constant – the instruction comprises the mathemati-
cian J.H. Conway’s Fractran programming language
(Conway, 1987), often used for theoretical studies
in computability and complexity). Its instructions
may be considered compounds of addition of a con-
stant y←x+k and branches that compare with a con-
stant x<K. Addition of a constant satisfies condition
(3) because an instruction that has the effect of y←
(x+A)+k+B, encrypted, can be obtained by running
y← x+ k′, encrypted, where k′ is k+A+B mod 232.
Compare with a constant also satisfies the condition,
because an instruction that compares x+A < K can
be obtained by running an instruction that compares
x < K′ where K′ is K−A mod 232 (to agree, the reader
needs to know that the conventional 2s complement
comparison u < v is invariant under translations).

The KPU runs the standard OpenRISC v1.1
instruction set (see https://opencores.org/or1k/
Architecture Specification) that does not satisfy (3)
but it may be modified to do so.

Neither HEROIC nor the KPU support condition
(4) at present (that encrypted data should not work
as encrypted program constants and vice versa), but
it can be arranged in the case of the KPU since the
processor has internal access to the decrypted form of
data, including the padding under the encryption.

4 COMPLIANT INSTRUCTIONS

Instruction sets are conventionally made up of instruc-
tions that (a) perform a relatively simple arithmetic
operation, such as ‘addition’ on data in registers or
in memory and return a result to registers or mem-
ory, instructions that (b) perform a comparison oper-
ation such as ‘less than’ between values in registers
or memory, branching to a different point in the pro-
gram if it is satisfied, plus (c) unconditional control
instructions such as jump to and return from a sub-
routine that always alter which instruction is executed
next. In the following, we will omit ubiquitous ‘under
the encryption’ qualifiers in the instruction semantics.

Many standard instructions of type (a) such as ad-
dition z ← x+y of two runtime values do not sat-

isfy condition (3). There are no configurable pa-
rameters for the compiler to modify its semantics to
z← (x+A1)+(y+A2)+B, as condition (3) stipulates.
At least one inline constant is required. For addition,
a nonstandard instruction with semantics z← x+y+k
satisfies condition (3), with two operands filled at run-
time and one provided by the compiler. The seman-
tics z← (x+A1)+(y+A2)+k+B may be obtained by
z← x+y+k′ adjusting k′ = k+A1+A2+B.

For multiplication, z← x∗y does not satisfy con-
dition (3) and neither does y← x∗k, the two standard
instructions. However, AMD and Intel in 2011-2013
introduced so-called fused instructions that combine
two arithmetic operations. While addition takes one
cycle to complete in a processor, multiplication takes
much longer (about ten cycles), and the repeating sub-
unit that forms the long multiplication logic multiplies
two short integers and adds in two short incoming
‘carry’ integers from subunits ‘right’ and ‘below’ in a
2-dimensional array. The column and row of subunits
at extreme ‘right’ and ‘bottom’ respectively may feed
two full integer addends into the calculation at no ex-
tra cost, and such a ‘fused multiply and add’ (FMA)
instruction was introduced in AMD and Intel’s FMA3
and FMA4 instruction sets for reasons of efficiency.
A fused multiply and add instruction satisfying (3) is,
for example, x3← (x1−k1)∗(x2−k2)+k3. In general,
if instruction semantics is x2← f (x1), then condition
(3) says that changing x1 by A and x2 by B is achieved
by modifying constant parameters, so the full instruc-
tion semantics must be x2← f (x1−k1)+k2.

A branch instruction (b) compares two operands
x1<x2. Condition (3) requires there be parameters in
the instruction for the compiler to generate the seman-
tics of (x1−k1)<(x2−k2) and (x1−k1)6<(x2−k2) from
it. That may be done by emitting different instructions
with tests of the form x1<x2+k′ and x1≥x2+k′ with
k′ = k2−k1. In conclusion, a complete set of machine
code instructions compliant to (3) is very feasible.

Then consider non-probabilistic attacks on a pro-
gram C running in a processor working encrypted and
satisfying (1-4), with instructions satisfying (3). Re-
call the encryption is assumed secure in its own right:
Theorem 1. There is no deterministic method by
which the privileged operator can read the encrypted
data read or written by program C, nor alter C to
write an intended encrypted value.

Proof. (Sketch) Imagine that every runtime datum
circulating in the processor under the encryption has
magically increased by 7. We will adapt the program
C by changing some of its embedded encrypted con-
stants to accept that change while still generating a
trace T that looks the same as before, up to encryp-
tion. The supposed method sees the new program and

SECRYPT 2017 - 14th International Conference on Security and Cryptography

250

trace as the same as before and reports the old answer,
whereas it should report the old answer plus 7. Done.

(Detail) Suppose for contradiction that the opera-
tor has a method f (T,C)=y of finding that the output
[y]E of C encrypts y, having observed the trace T , a
sequence of states si of the register/memory with in-
struction pi at address ai transforming si

ai:pi→ si+1. De-
fine a transform s→ s′ by adding 7 to the number in
each location r in state s giving the state s′ with s′ r =
[[sr]D +7]E , [·]D , [·]E representing de/encryption.

A program C′ is obtained by (i) replacing ev-
ery instruction p at address a in C that is of the
form r0←[([r1]D−k1)Θ([r2]D−k2)+k0]E with p′ of
the same form r0←[([r1]D−k′1)Θ([r2]D−k′2)+k′0]E
where k′i = ki + 7, i = 0,1,2; (ii) if the instruction
is a branch with test ([r1]D−k1)R([r2]D−k2), then it
is likewise changed to ([r1]D−k′1)R([r2]D−k′2) with
k′i = ki + 7, i = 1,2; (iii) unconditional jump instruc-
tions p at address a are left just as they are, with

p′ = p. The replacements (i) are designed so s′
a:p′→ t ′

where s
a:p→ t. The next instruction address is a+1.

Branches (ii) with a test ([r1]D−k′1)R([r2]D−k′2) take
the same jump at state s′ as ([r1]D−k1)R([r2]D−k2)
does at state s, getting the same result from the test.
The unconditional jumps (iii) also take the same jump
at state s′ as at state s.

Thus if T with si
ai:pi→ si+1 is a trace of C, then T ′

with s′i
ai:p′i→ s′i+1 is at least a feasible trace of C′, hence

is the unique trace of C′ in the deterministic processor.
The program C′ ‘looks the same’, C′∼C, differing

only by the encrypted numbers [k]E instead of [k′]E
in it. The new program trace T ′ ‘looks the same’ too,
T ′ ∼ T , in the same sense, that is, up to the encrypted
numbers in it, because the branches after comparisons
go the same way as in T and make the same jump, giv-
ing rise to the same sequence of instruction addresses.
The difference is states s′i instead of si, and instruction
p′i instead of pi at address ai, and the differences be-
tween all those are different encrypted numbers.

If the method f were sensitive to differences in
encrypted values then it would vary while the value
underneath the encryption stayed constant6, as it can-
not read the encryption by hypothesis. So it must be
constant with respect to changes in encrypted values,
with C∼C′ and T∼T ′ implying f (T,C) = f (T ′,C′).
So f (T ′,C′)= f (T,C)=y. Yet the output of C′ is not
[y]E but [y+7]E , so the method does not work.

6Formally it should be supposed that any feature of en-
crypted values that the attacker’s probes f may be sensitive
to, such as counting the number of 7s, is triggered by some
encryption [y]E of every value y, so f (. . . , [y]E , . . .) must be
constant with respect to that parameter if f really detects y.

For the second half of the result, suppose the op-
erator builds a new program C′= f (T,C) that returns
outputs [y]E where y is known to and decided by the
operator. Then the constants [k]E of C′ are in C be-
cause the operator’s technique f has no way of arith-
metically combining them (the condition (4) means
they cannot be combined arithmetically in-processor
nor taken from the trace, and the operator does not
have the encryption key). The first half of the result
now says the operator cannot read the outputs [y]E of
C′, a contradiction.

Remark 1. The proof inspected in detail shows that
runtime data through instructions satisfying condition
(3) (case (i) in the proof) in the trace can be altered
independently via the constants in the instructions.

So intuitively, knowing the instructions and/or trace
ought not to enable any bit of the runtime data under
the encryption to be guessed with any degree of statis-
tical accuracy because the program might have been
modified to have the data offset by any amount from
what might naturally have been guessed. But is any
possible offset from nominal, at any point in the pro-
gram, for any particular register or memory location,
equally as probable as another? That cannot be said
without the probabilistic setting of Section 6.

In particular that does not take into account that
human beings only write certain programs, so one
can bet, for example, on finding an encrypted 1 in
nearly any program trace. Leveraging the intuition
above into a practical tool for obfuscation requires a
compiler strategy, described in the next sections, that
varies compiled code so runtime data varies randomly
and uniformly from nominal values, else all is bluff.

5 OBFUSCATING COMPILATION

To make compilation to a compliant instruction set as
described in Section 4 use the possibilities for obfus-
cation in order to frustrate a dictionary attack against
the runtime data values, the compiler should set an
arbitrary offset ∆xl for xl , where the value [xl]E is in
the register or memory location l, at different points
in the program. This is manipulated by the compiler.
The offset represents by how much the decrypted data
value xl in the location is to vary from nominal (with-
out obfuscation) at runtime. Each instruction that
writes at location l offers an opportunity for the com-
piler to reset the offset ∆xl used there.

For example, in compiling a boolean-valued com-
putational conjunction expression A&&B in the pro-
gram source code, the possible additive offset is 0 or
1 mod 2. An offset of 0 means the result is returned as

On Obfuscating Compilation for Encrypted Computing

251

is, ‘telling the truth’. An offset of 1 means the result
is inverted: ‘lying’. The compiler chooses between:

(a) whether A is compiled telling the truth or lying

(b) whether B is compiled telling the truth or lying

(c) whether it will lie or tell the truth for C = A&&B.

The (a) corresponds to whether ∆A=0 (truth) or ∆A=1
(liar) is added mod 2 to the result for A. Similarly (b)
corresponds to whether ∆B=0 (truth) or ∆B=1 (liar)
is added in to the result for B. Let a be true when
(a) is to tell truth (∆A=0), and false when (a) is to lie
(∆A=1). Similarly for b with respect to (b) and c with
respect to (c). What is to be computed at runtime is:

c↔ ((a↔ A)&&(b↔ B))

where the arrow in x↔ y stands for the boolean bi-
conditional operator. That is:

if abc then A&&B
if abc then A&&B
if abc then A&&B
if abc then A&&B

if abc then A&&B
if abc then A&&B
if abc then A&&B
if abc then A&&B

where the overline means boolean negation. The
compiler knows a and b and chooses c with 50/50
probability, deciding which of A&&B, A&&B, etc.,
it will generate machine code for. All the generated
codes will look alike, modulo the encrypted constants,
unreadable by the operator. If [A] is the compiled code
for A and [B] is the compiled code for B, producing
values 1/0 for true/false respectively in register t0,
then the compiler emits a machine code sequence [C]:

[A]; ia; beqi t0 [0]E l; [B]; ib; l : ic

where if a is true (‘truth teller’) then ia is the ma-
chine code sequence that maintains the value set by
A in register t0 that the beqi instruction tests against
the zero supplied as an encrypted constant, and jumps
to the point l if equal, ‘short-circuiting’ the calcula-
tion. It suffices to emit nothing, but it is required that
the sequence look the same for all possible cases, and
‘nothing’ would be a give-away. If a is false (‘liar’)
then ia is a machine code sequence of the same length
that flips the value set by A, the compilation of A be-
ing such that it deliberately gives the ‘wrong’ result.

The final ic sequence can move to both branches:

[A]; ia; ic; beqi t0 [c]E l; [B]; ib; ic; l :

The sequence ia; ic either flips the value no times,
once, or twice, the last being the same as no times,
so does the same as ia↔c and may be replaced by it:

[A]; ia↔c; beqi t0 [c]E l; [B]; ib↔c; l :

To avoid exposing via [c]E an encryption of 0 or 1,
the ia↔c code may produce a result that is offset by

a compiler-decided random constant k from nominal,
and then the branch tests against c+k instead of c:

[A]; ika↔c; beqi t0 [c+k]E l; [B]; ib↔c; l :

The codes for A and B always have the same length
and form, differing only in inline encrypted constants,
so that is true of the whole too. There is no possibility
of an observer spotting when the value in t0 is left
unchanged and when it is changed by ika↔c because
the encrypted value is always changed, even when the
decrypted value is not.

Let the instruction xori x2 x1 k k2 k1 have seman-
tics x2←(x1−k1)̂k+k2, computing bitwise exclusive
or (‘xor’). The code for the i∗ can be one of:

xori t0 t0 [0]E [0]E [0]E # keep bool value
xori t0 t0 [−1]E [0]E [0]E # flip bool value

since x XOR 1 is the complement of the boolean value
x. The code for ika↔c is one of:

xori t0 t0 [0]E [k]E [0]E # keep bool value
xori t0 t0 [−1]E [k]E [0]E # flip bool value

The [0]E and [−1]E will also be offset by values ar-
bitrarily chosen by the compiler via a further applica-
tion of the ‘shift by k’ technique during the compila-
tion of A and B, as set out in the next section.

6 COMPILING STATEMENTS

The compiler works with a database D : Loc→ Int
containing the (32-bit) integer (type Int) offsets for
data, indexed per register or memory location (type
Loc). The offset represents by how much the runtime
data underneath the encryption is to vary from nomi-
nal at that point in the program.

The compiler also maintains a database L :
Var→Loc of the location for each source code vari-
ables (type Var) placement in registers or memory.
Let DB abbreviate the type of database D, then the
compiler has type signature:

CL[:] : DB× source code→ DB×machine code

As syntactic sugar, a pair in the cross product is writ-
ten D : s, or D : m, and details of the entirely conven-
tional management of database L are omitted here.

Sequence: The compiler works left-to-right
through a source code sequence:

CL[D0 : s1;s2] = D2 : m1;m2

where D1 : m1 = CL[D0 : s1]

D2 : m2 = CL[D1 : s2]

SECRYPT 2017 - 14th International Conference on Security and Cryptography

252

The database D1 that results from compiling the left
sequent s1 in the source code, emitting machine code
m1, is passed to the compilation of the right sequent
s2, emitting machine code m2 following on from m1.

Assignment: An opportunity for new obfuscation
arises at any assignment to a source code variable x.
An offset ∆x = D1Lx for the data in the target reg-
ister or memory location Lx is generated randomly,
replacing the old offset D0Lx that previously held for
the data at that location. The compiler emits code m1
for the expression e which puts the result in a desig-
nated temporary location t0 with offset ∆e = D1t0. It
is transferred from there to the location Lx by a fol-
lowing add instruction. Let the machine code instruc-
tion ‘addir2 r1 [i]E ’ have semantics x2← x1+i where
the content of register r2 is [x2]E and the content of
register r1 is [x1]E . Then the emitted code is

CL[D0 : x=e] = D1 : m1;addi Lx t0 [i]E
where i = ∆x−∆e

D1 : m1 = CL
t0[D0 : e]

The t0 subscript for the expression compiler tells it to
aim at location t0 for the result of expression e. That
is one of the registers reserved for temporary values.

Return: The compiler at a ‘return e’ from function
f selects a final offset ∆ fret (functions f are subtyped
by offsets ∆ fpar0 , ∆ fpar1 , etc. in their formal parameters
and ∆ fret in their return value) and emits an add in-
struction with target the standard function return value
register v0 prior to the conventional function trailer.
The add instruction in the trailer adjusts to the offset
∆ fret from the offset ∆e = D1t0 with which the result
from e in t0 is computed by the code m1:

CL[D0 : return e] = D1 : m1;addi v0 t0 [i]E
. . . # restore stack
jr ra # jump return

where i = ∆ fret −∆e

D1 : m1 = CL
t0[D0 : e]

The offset for v0 is updated in D1 to D1v0=∆ fret .
Other source code control constructs are treated

like return in the way they adjust the final offset to
meet constraints. For an if statement, final offsets in
each branch are adjusted to match at the join. A while
statement is an if statement that joins back to its own
start, so the final offset in the loop must equal the ini-
tial offset. Each function definition is compiled sepa-
rately, the databases being flushed before each.
Remark 2. The addi instructions in the cases (b-c)
above contain an embedded value i that is contributed
to by a freely chosen constant k=∆x in (b) and k=∆ fret

in (c), which will be referred to generically as k in the
proof of the theorem below. It is chosen by the com-
piler from a distribution designed to make uniform the
distribution of values written by the instruction.
Theorem 2. The probability across different compi-
lations that any particular 32-bit value x has its en-
cryption [x]E in location l at any given point in the
program at runtime is uniformly 1/232.

Proof. Consider the arithmetic instruction I in the
program. Suppose that by fiddling with the embed-
ded constants in the other instructions in the pro-
gram it is already possible for all other locations l′

other than that written by I and at all other points
in the program to vary the value xl′ = x+∆x with
[xl′]E in l′ randomly and uniformly across compila-
tions, taking advantage of the possibilities in the in-
struction set, as exhibited in the compiler specifica-
tion. Let I write value [y]E in location l. By con-
dition (3) (c.f. the remark above) I has a parameter
k that may be tweaked to offset y from the nominal
result f (x + ∆x) with respect to its input x + ∆x by
an amount ∆y. The compiler chooses k with a dis-
tribution such that ∆y is uniformly distributed across
the possible range. The instructions in the program
that receive y from I may be adjusted to compen-
sate for the ∆y change by changes in their controlling
parameters. Then p(y=Y)=p(f (x+∆x)+∆y=Y) and
the latter probability is p(y=Y)=∑

Y ′
p(f (x+∆x)=Y ′∧

∆y=Y−Y ′). The probabilities are independent (be-
cause ∆y is newly introduced), so that sum is
p(y=Y)=∑

Y ′
p(f (x+∆x)=Y ′)p(∆y=Y−Y ′). That is

p(y=Y)= 1
232 ∑

Y ′
p(f (x+dx)=Y ′). Since the sum is

over all possible Y ′, the total of the summed proba-
bilities is 1, and p(y=Y)=1/232. The distribution of
xl′ = x+∆x in other locations l′ is unchanged. Done by
induction on the machine code graph structure.

A helpful intuition is that ∆y has maximal entropy, so
adding it in swamps all biases in the distribution of y.

The result provides the probabilistic setting for se-
mantic security. Recall that encryption is assumed
secure so collisions may be assumed to be avoided.
Consider a hypothetical probabilistic method F that
guesses for a particular runtime value ‘the top bit is
1, not 0’, as applied to a compiled program C and its
trace T with probability p > 0.5 over many trials of
the method. In fact, results 1 and 0 are equally likely
across all possible compilations according to Theo-
rem 2, and the probability (see below) F is right is

0.5(1−p)+0.5p = 0.5 (*)

That is because the method F cannot tell which of
the compilations C it is looking at as all the compiled

On Obfuscating Compilation for Encrypted Computing

253

codes and their traces T are exactly the same mod-
ulo the encrypted values in them. There are no col-
lisions, certainly not between program constants and
runtime data, as condition (4) maintains, so each com-
piled code C and trace T consists of different values
never repeated internally or between different pairs C,
T . All codes C are the same length and form and
all traces T are the same length and form (they all
branch the same way at the same points). The method
F applied to different C and T has nothing to cause it
to give different answers except incidental features of
the encrypted values (such as the total number of 7s in
the decimal representations, perhaps) and its own in-
ternal spins of a coin that result in it saying 1 a propor-
tion p of the time, and 0 a proportion 1−p of the time.
Both those are at least statistically independent of the
truth of if the bit is 1 or 0, as the encryption is secure
in the first case and because of causal independence
in the second case, which justifies the calculation (*).

That is semantic security at runtime for object
code from an ‘obfuscating compiler’,7 following The-
orem 2, modulo the assumption that encryption is se-
cure and conditions (1-4) hold. Has data obfuscation
as defined in Section 1 been obtained? Yes. The flat
distribution of possible data values under the encryp-
tion means no information can be gained from traces.

CONCLUSION

This paper has considered privacy and security of data
on platforms for encrypted computing against the op-
erator or operating system as an adversary, assuming
the encryption is secure in its own right.

Conditions on the processor and machine code ar-
chitecture have been defined such that a compiler may
obfuscate the runtime data under the encryption, pro-
ducing uniformly distributed variations across differ-
ent compilations, at every point in the program. That
eliminates attacks based on the use by a human author
of small numbers in program or data. No unencrypted
data value can then be statistically inferred from code
and trace, making a known plaintext attack on the en-
cryption impossible. That also amounts to semantic
security of an integrated system for encrypted com-
puting consisting of a processor with an instruction
set satisfying the conditions set out, plus an ‘obfuscat-
ing compiler’, modulo the security of the encryption.

7Haskell source code for a prototype obfuscating C
compiler following our design may be downloaded from
nbd.it.uc3m.es/∼ptb/obfusc comp-0 9a.hs. The compiler
produces generic ‘fused operate and add’ instructions.

ACKNOWLEDGEMENTS

Zhiming Liu wishes to thank the Chinese NSF for
support from research grant 61672435, and South-
west University for research grant SWU116007. Peter
Breuer wishes to thank Hecusys LLC (hecusys.com)
for continued support in KPU development.

REFERENCES
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,

Sahai, A., Vadhan, S., and Yang, K. (2001). On
the (im)possibility of obfuscating programs. In Kil-
ian, J., editor, Proc. 21st Annu. Int. Cryptol. Conf.
(CRYPTO’01), Adv. Cryptol., pages 1–18. Springer.

Breuer, P. T. and Bowen, J. P. (2014). Towards a work-
ing fully homomorphic crypto-processor: Practice and
the secret computer. In Jörjens, J., Pressens, F., and
Bielova, N., editors, Proc. Int. Symp. Eng. Sec. Softw.
Syst. (ESSoS’14), volume 8364 of LNCS, pages 131–
140, Berlin/Heidelberg. Springer.

Breuer, P. T. and Bowen, J. P. (2016). A fully encrypted
microprocessor: The secret computer is nearly here.
Procedia Comp. Sci., 83:1282–1287.

Breuer, P. T., Bowen, J. P., Palomar, E., and Liu, Z. (2016).
A practical encrypted microprocessor. In Callegari,
C., van Sinderen, M., Sarigiannidis, P., Samarati, P.,
Cabello, E., Lorenz, P., and Obaidat, M. S., editors,
Proc. 13th Int. Conf. Sec. Cryptog. (SECRYPT’16),
volume 4, pages 239–250, Portugal. SCITEPRESS.

Conway, J. H. (1987). Fractran: A simple universal pro-
gramming language for arithmetic. In Open Problems
in Commun. & Comput., pages 4–26. Springer.

Daemen, J. and Rijmen, V. (2002). The Design of Rijndael:
AES – The Advanced Encryption Standard. Springer.

Fletcher, C. W., van Dijk, M., and Devadas, S. (2012). A
secure processor architecture for encrypted computa-
tion on untrusted programs. In Proc. 7th Scal. Trust.
Comput. Workshop (STC’12), pages 3–8, NY. ACM.

Hada, S. (2000). Zero-knowledge and code obfuscation. In
Okamoto, T., editor, Proc. 6th Int. Conf. Theor. Appli-
cat. Cryptol. Inform. Sec. (ASIACRYPT’00), number
1976 in LNCS, pages 443–457. Springer.

Ostrovsky, R. and Goldreich, O. (1992). Comprehensive
software protection system. US Pat. 5,123,045.

Paillier, P. (1999). Public-key cryptosystems based on com-
posite degree residuosity classes. In Proc. EURO-
CRYPT’99, Adv. Cryptol., pages 223–238. Springer.

Patterson, D. (1985). Reduced instruction set computers.
Commun. ACM, 28(1):8–21.

Tsoutsos, N. and Maniatakos, M. (2015). The HEROIC
framework: Encrypted computation without shared
keys. IEEE Trans. CAD IC Syst., 34(6):875–888.

van Dijk, M. and Juels, A. (2010). On the impossibility of
cryptography alone for privacy-preserving cloud com-
puting. HotSec, 10:1–8.

Wang, Z. and Lee, R. B. (2006). Covert and side chan-
nels due to processor architecture. In Proc. 2nd Annu.
Comp. Sec. Applic. Conf. (ACSAC’06), pages 473–
482. IEEE.

Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCa-
mant, S., Song, D., and Zou, W. (2013). Practical con-
trol flow integrity and randomization for binary exe-
cutables. In Symp. Sec. Priv., pages 559–573. IEEE.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

254

