parative study on a 3-DOF ANAT robot manipulator
show the effectiveness of the proposed controller.
ACKNOWLEDGEMENTS
This work was supported by Ecole de Technologie
Sup
´
erieure, Montreal, Canada and Ecole Mohamma-
dia d’Ing
´
enieurs, University of Mohammed V, Rabat,
Morocco.
REFERENCES
Boiko, I. and Fridman, L. (2005). Analysis of chattering in
continuous sliding-mode controllers. IEEE Transac-
tions on Automatic Control, 50:1442–1446.
Cao, Y. and Chen, X. B. (2014). Disturbance-observer-
based sliding-mode control for a 3-dof nanoposition-
ing stage. IEEE/ASME Transactions on Mechatronics,
19(3):924–931.
Craig, J. J. (1989). Introduction to Robotics: Mechanics
and Control. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition.
Fallaha, C., Saad, M., Kanaan, H., and Al-Haddad, K.
(2011). Sliding-mode robot control with exponential
reaching law. IEEE Transactions on Industrial Elec-
tronics, 58.
Fridman, L. (2001). An averaging approach to chattering.
IEEE Transactions on Automatic Control, 46:1260–
1265.
Fridman, L. and Levant, A. (2002). Higher order sliding
mode. In Systems and Control Book Series.
Guo, Y. and Woo, P.-Y. (2003). An adaptive fuzzy slid-
ing mode controller for robotic manipulators. IEEE
Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 33(2):149–159.
Hsia, T. and Gao, L. (1990). Robot manipulator control
using decentralized linear time-invariant time-delayed
joint controllers. IEEE International Conference on
Robotics and Automation,, 3:2070–2075.
Hsia, T. C. and Jung, S. (1995). A simple alternative to
neural network control scheme for robot manipula-
tors. IEEE Transactions on Industrial Electronics,
42(4):414–416.
Jin, M., Jin, Y., Chang, P., and Choi, C. (2011). High-
accuracy tracking control of robot manipulators us-
ing time delay estimation and terminal sliding mode.
International Journal of Advanced Robotic Systems,
8:65–78.
Kali, Y., Saad, M., Benjelloun, K., and Benbrahim, M.
(2015). Sliding mode with time delay control for
mimo nonlinear systems with unknown dynamics. In
International Workshop on Recent Advances in Slid-
ing Modes, April 9-11. Istanbul, Turkey.
Khalil, H. (1992). Nonlinear Systems. Macmillan Publish-
ing Company, New York.
Levant, A. (1993). Sliding order and sliding accuracy in
sliding mode control. International Journal of Con-
trol, 58:1247–1263.
Liu, J. and Wang, X. (2012). Advanced Sliding Mode Con-
trol for Mechanical Systems. Springer.
Seraji, H. (1987). Adaptive control of robotic manipulators.
In 26th IEEE Conference on Decision and Control,
volume 26, pages 599–602.
Shtessel, Y., Edwards, C., Fridman, L., and Levant, A.
(2014). Sliding Mode Control and Observation.
Springer, New York.
Slotine, J. and Li, W. (1991). Applied nonlinear control.
Printice-Hall international.
Tran, M.-D. and Kang, H.-J. (2015). Nonsingular terminal
sliding mode control of uncertain second-order non-
linear systems. Mathematical Problems in Engineer-
ing, 2015:1–8.
Utkin, V. (1992). Sliding mode in control and optimization.
Springer-Verlag, Berlin.
Utkin, V., Guldner, J., and Shi, J. (1999). Sliding mode
control in electromechanical systems. Taylor-Francis.
Yi, S. Y. and Chung, M. J. (1997). A robust fuzzy logic con-
troller for robot manipulators with uncertainties. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 27(4):706–713.
Youcef-Toumi, K. and Ito, O. (1990). A time delay con-
troller for systems with unknown dynamics. ASME
Journal of Dynamic System, Measurement and Con-
trol, 112:133–141.
ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics
232