may enable to optimize energy consumption and
travel time simultaneously. Furthermore, the reduced
complexity cost function favors the possibility of
online application. Suitable constraints to develop
this approach need to be addressed in future works.
Table 4: Results for Moment of Inertia Optimized Exem-
plary Trajectories.
Travel
Time [s]
Energy
Consumption [J]
T1
init
2.96 9733
T1
opti,in
2.78 (- 6.1 %) 10394 (+ 6.8 %)
T2
init
3.50 15005
T2
opti,in
3.20 (- 8.6 %) 16193 (+ 7.9 %)
T3
init
3.01 11769
T3
opti,in
2.72 (- 9.6 %) 11021 (- 6.4 %)
T4
init
4.84 30268
T4
opti,in
4.57 (- 5.6 %) 28492 (- 5.9 %)
ACKNOWLEDGEMENTS
The authors would like to thank the KUKA Roboter
GmbH for granting us access to their laboratories to
perform power measurements on a KUKA KR 210.
REFERENCES
(2016). World record: 248.000 industrial robots revolution-
ising the global economy. IFR press release.
Biagiotti, L. and Melchiorri, C. (2008). Trajectory Planning
for Automatic Machines and Robots. Springer Science
& Business Media.
Bobrow, J. E. (1988). Optimal Robot Plant Planning Us-
ing the Minimum-Time Criterion. IEEE Journal on
Robotics and Automation, 4(4):443–450.
Brossog, M., Bornschlegl, M., Franke, J., et al. (2015). Re-
ducing the Energy Consumption of Industrial Robots
in Manufacturing Systems. The International Jour-
nal of Advanced Manufacturing Technology, 78(5-
8):1315–1328.
Costantinescu, D. and Croft, E. (2000). Smooth and time-
optimal trajectory planning for industrial manipula-
tors along specified paths. Journal of Robotic Systems,
17(5):233–249.
Gattringer, H., Riepl, R., and Neubauer, M. (2013). Op-
timizing Industrial Robots for Accurate High-Speed
Applications. Journal of Industrial Engineering,
2013.
Geering, H. P., Guzzella, L., Hepner, S. A., and Onder, C. H.
(1985). Time-Optimal Motions of Robots in Assem-
bly Tasks. In Proc. of the IEEE Conf. on Decision and
Control, pages 982–989.
Gleeson, D., Bj
¨
orkenstam, S., Bohlin, R., Carlson, J. S., and
Lennartson, B. (2015). Optimizing Robot Trajectories
for Automatic Robot Code Generation. In Proc. of the
IEEE Int. Conf. on Automation Science and Engineer-
ing, pages 495–500. IEEE.
Gleeson, D., Bj
¨
orkenstam, S., Bohlin, R., Carlson, J. S., and
Lennartson, B. (2016). Towards Energy Optimiza-
tion Using Trajectory Smoothing and Automatic Code
Generation for Robotic Assembly. Procedia CIRP,
44:341–346.
Hamon, P., Gautier, M., and Garrec, P. (2010). Dy-
namic Identification of Robots With a Dry Friction
Model Depending on Load and Velocity. In Proc. of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 6187–6193.
Hansen, C., Eggers, K., Kotlarski, J., and Ortmaier, T.
(2015). Concurrent Energy Efficiency Optimization
of Multi-Axis Positioning Tasks. In Proc. of the IEEE
Int. Conf. on Industrial Electronics and Applications,
pages 518–525.
Hansen, C., Kotlarski, J., and Ortmaier, T. (2013). Path
Planning Approach for the Amplification of Electri-
cal Energy Exchange in Multi Axis Robotic Systems.
In Proc. of the IEEE Int. Conf. on Mechatronics and
Automation, pages 44–50.
Hansen, C.,
¨
Oltjen, J., Meike, D., and Ortmaier, T. (2012).
Enhanced Approach for Energy-Efficient Trajectory
Generation of Industrial Robots. In Proc. of the IEEE
Int. Conf. on Automation Science and Engineering,
pages 1–7.
Hussong, A. and Heimann, B. (2007). Restricted Minimum-
Effort Motion Planning for serial Manipulators. In
Proceedings of the 12th IFToMM World Congress.
Johnson, C. T. and Lorenz, R. D. (1992). Experimental
identification of friction and its compensation in pre-
cise, position controlled mechanisms. IEEE Transac-
tions on Industry Applications, 28(6):1392–1398.
Meike, D., Pellicciari, M., and Berselli, G. (2014). Energy
Efficient Use of Multirobot Production Lines in the
Automotive Industry: Detailed System Modeling and
Optimization. IEEE Transactions on Automation Sci-
ence and Engineering, 11(3):798–809.
Meike, D. and Ribickis, L. (2011). Industrial Robot Path
Optimization Approach with Asynchronous Fly-By in
Joint Space. In Proc. of the IEEE International Sym-
posium on Industrial Electronics, pages 911–915.
Mohammed, A., Schmidt, B., Wang, L., and Gao, L.
(2014). Minimizing Energy Consumption for Robot
Arm Movement. Procedia CIRP, 25:400–405.
Paes, K., Dewulf, W., Vander Elst, K., Kellens, K., and
Slaets, P. (2014). Energy Efficient Trajectories for an
Industrial ABB Robot. Procedia CIRP, 15:105–110.
Pellicciari, M., Berselli, G., Leali, F., and Vergnano, A.
(2013). A method for reducing the energy consump-
tion of pick-and-place industrial robots. Mechatron-
ics, 23(3):326–334.
Riazi, S., Bengtsson, K., Wigstr
¨
om, O., Vidarsson, E., and
Lennartson, B. (2015). Energy Optimization of Multi-
Robot Systems. In Proc. of the IEEE Int. Conf. on Au-
tomation Science and Engineering, pages 1345–1350.
Optimizing PTP Motions of Industrial Robots through Addition of Via-points
537