REFERENCES
Ardeshiri, T., Norrl
¨
of, M., L
¨
ofberg, J., and Hansson, A.
(2011). Convex Optimization Approach for Time-
Optimal Path Tracking of Robots with Speed Depen-
dent Constraints. In IFAC World Congress, volume 18,
pages 14648–14653. IFAC.
Bobrow, J. E., Dubowsky, S., and Gibson, J. S.
(1985). Time-Optimal Control of Robotic Manip-
ulators Along Specified Paths. The Int. Journal of
Robotics Research, 4:3–17.
Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press.
Debrouwere, F., Van Loock, W., Pipeleers, G., Dinh, Q. T.,
Diehl, M., De Schutter, J., and Swevers, J. (2013).
Time-Optimal Path Following for Robots With Con-
vex - Concave Constraints Using Sequential Con-
vex Programming. IEEE Transactions on Robotics,
29(6):1485–1495.
Grant, M. and Boyd, S. (2014). CVX: Matlab soft-
ware for disciplined convex programming, version
2.1. http://cvxr.com/cvx.
LaValle, S. (2006). Planning Algorithms. Cambridge Uni-
versity Press, New York, NY, USA.
Lipp, T. and Boyd, S. (2014). Minimum-time speed opti-
misation over a fixed path. International Journal of
Control, 87(6):1297–1311.
Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H.
(1998). Applications of second-order cone program-
ming. Linear Algebra and its Applications, 284(1-
3):193–228.
Pham, Q.-C. and Stasse, O. (2015). Time-optimal path pa-
rameterization for redundantly actuated robots: A nu-
merical integration approach. IEEE/ASME Transac-
tions on Mechatronics, 20(6):3257–3263.
Reynoso-Mora, P., Chen, W., and Tomizuka, M. (2013).
On the time-optimal trajectory planning and control of
robotic manipulators along predefined paths. Amer-
ican Control Conference (ACC), 2013, (November
2016):371–377.
Siciliano, B. and Khatib, O., editors (2008). Springer Hand-
book of Robotics. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Verscheure, D., Demeulenaere, B., Swevers, J., De Schut-
ter, J., and Diehl, M. (2008). Time-energy optimal
path tracking for robots: a numerically efficient opti-
mization approach. In IEEE International Workshop
on Advanced Motion Control, pages 727–732, Trento.
IEEE.
Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter,
J., and Diehl, M. (2009). Time-optimal path tracking
for robots: A convex optimization approach. IEEE
Transactions on Automatic Control, 54(10):2318–
2327.
Zhang, Q., Li, S.-R., and Gao, X.-S. (2013). Practical
smooth minimum time trajectory planning for path
following robotic manipulators. 2013 American Con-
trol Conference, pages 2778–2783.
Zhao, Y. and Tsiotras, P. (2013). Speed Profile Optimiza-
tion for Optimal Path Tracking. In American Control
Conference (ACC), pages 1171 – 1176.
ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics
246