REFERENCES
Barkley, R. A. (1997). Behavioral inhibition, sustained at-
tention, and executive functions: constructing a unify-
ing theory of adhd. Psychological bulletin, 121(1):65.
Chen, C.-Y., Wang, C.-J., Chen, E.-L., Wu, C.-K., Yang,
Y. K., Wang, J.-S., and Chung, P.-C. (2010). Detecting
sustained attention during cognitive work using heart
rate variability. In Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), 2010 Sixth
International Conference on, pages 372–375. IEEE.
Das, R., Chatterjee, D., Das, D., Sinharay, A., and Sinha,
A. (2014). Cognitive load measurement - a methodol-
ogy to compare low cost commercial eeg devices. In
Advances in Computing, Communications and Infor-
matics (ICACCI, 2014 International Conference on,
pages 1188–1194.
Gevins, A., Smith, M. E., McEvoy, L., and Yu, D. (1997).
High-resolution eeg mapping of cortical activation re-
lated to working memory: effects of task difficulty,
type of processing, and practice. Cerebral cortex,
7(4):374–385.
Heidrich, R. O., Jensen, E., Rebelo, F., and Oliveira, T.
(2015). A comparative study: use of a brain-computer
interface (bci) device by people with cerebral palsy
in interaction with computers. Anais da Academia
Brasileira de Ci
ˆ
encias, (AHEAD):0–0.
Hidecker and et al. (2011). Developing and validating the
communication function classification system (cfcs)
for individuals with cerebral palsy. Developmental
Medicine and Child Neurology, 53:704–710.
Lee, J. M., Park, K. S., Lee, Y., Shin, I., and Park, K. S.
(2000). Characterizing eeg during mental activity
using non-linear measures: the more concentration,
the higher correlation dimension. In Engineering
in Medicine and Biology Society, 2000. Proceedings
of the 22nd Annual International Conference of the
IEEE, volume 2, pages 1326–1328 vol.2.
Lubar, J. F. (1991). Discourse on the development
of eeg diagnostics and biofeedback for attention-
deficit/hyperactivity disorders. Biofeedback and Self-
regulation, 16(3):201–225.
McMurrough, C., Ferdous, S., Papangelis, A., Boisselle, A.,
and Heracleia, F. M. (2012). A survey of assistive de-
vices for cerebral palsy patients. In Proceedings of
the 5th International Conference on PErvasive Tech-
nologies Related to Assistive Environments, page 17.
ACM.
Medine, D. (2016). Labstreaminglayer,
https://github.com/sccn/labstreaminglayer/wiki.
Merino, M., G
´
omez, I., and Molina, A. J. (2014). Stress and
heart rate: Significant parameters and their variations.
Experimental and Clinical Cardiology, pages 3409–
3517.
Mill
´
an, J. d. R., Rupp, R., M
¨
uller-Putz, G. R., Murray-
Smith, R., Giugliemma, C., Tangermann, M., Vidau-
rre, C., Cincotti, F., K
¨
ubler, A., Leeb, R., et al. (2010).
Combining brain–computer interfaces and assistive
technologies: state-of-the-art and challenges. Fron-
tiers in neuroscience, 4.
Mu
˜
noz, J. E., Lopez, D. S., Lopez, J. F., and Lopez, A.
(2015). Design and creation of a bci videogame to
train sustained attention in children with adhd. In
Computing Colombian Conference (10CCC), 2015
10th, pages 194–199. IEEE.
Nicolas-Alonso, L. F. and Gomez-Gil, J. (2012). Brain
computer interfaces, a review. Sensors, 12(2):1211.
Palisano, R., Rosenbaum, P., Bartlett, D., and Livingston,
M. (1997). Development and reliability of a system to
classify gross motor function in children with cerebral
palsy. Dev Med Child Neurol, 39:214–223.
Rebolledo-Mendez, G., Dunwell, I., Mart
´
ınez-Mir
´
on, E. A.,
Vargas-Cerd
´
an, M. D., De Freitas, S., Liarokapis, F.,
and Garc
´
ıa-Gaona, A. R. (2009). Assessing neuroskys
usability to detect attention levels in an assessment ex-
ercise. In Human-Computer Interaction. New Trends,
pages 149–158. Springer.
Rodr
´
ıguez, M., Gim
´
enez, R., Diez, P., Avila, E., Laciar, E.,
Orosco, L., and Correa, A. G. (2013). Playing with
your mind. In Journal of Physics: Conference Series,
volume 477, page 012038. IOP Publishing.
Siamaknejad, H., Loo, C. K., and Liew, W. S. (2014).
Fractal dimension methods to determine optimum eeg
electrode placement for concentration estimation. In
Soft Computing and Intelligent Systems (SCIS), 2014
Joint 7th International Conference on and Advanced
Intelligent Systems (ISIS), 15th International Sympo-
sium on, pages 952–955.
Spinelli, E. M., Martinez, N. H., and Mayosky, M. A.
(2001). A single supply biopotential amplifier. Medi-
cal engineering & physics, 23(3):235–238.
Taelman, J., Vandeput, S., Spaepen, A., and Van Huffel, S.
(2009). Influence of mental stress on heart rate and
heart rate variability. In 4th European conference of
the international federation for medical and biologi-
cal engineering, pages 1366–1369. Springer.
Tyson, P. D. (1987). Task-related stress and eeg al-
pha biofeedback. Biofeedback and Self-Regulation,
12(2):105–119.
Villarejo, M. V., Zapirain, B. G., and Zorrilla, A. M. (2012).
A stress sensor based on galvanic skin response (gsr)
controlled by zigbee. Sensors, 12(5):6075–6101.
Wang, Q. and Sourina, O. (2013). Real-time mental arith-
metic task recognition from eeg signals. Neural Sys-
tems and Rehabilitation Engineering, IEEE Transac-
tions on, 21(2):225–232.
Wang, Q., Sourina, O., and Nguyen, M. K. (2010). Eeg-
based ”serious” games design for medical applica-
tions. In Cyberworlds (CW), 2010 International Con-
ference on, pages 270–276.
Welton, T., Brown, D. J., Evett, L., and Sherkat, N. (2016).
A brain–computer interface for the dasher alternative
text entry system. Universal Access in the Information
Society, 15(1):77–83.
A Hardware/Software Platform to Acquire Bioelectrical Signals. A Case Study: Characterizing Computer Access through Attention
83