Pacific Conference on Computer Graphics and Appli-
cations, pages 244–251.
Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B.,
Marchesseau, S., Talbot, H., Courtecuisse, H., Bous-
quet, G., Peterlik, I., et al. (2012). Sofa: A multi-
model framework for interactive physical simulation.
In Soft Tissue Biomechanical Modeling for Computer
Assisted Surgery, pages 283–321. Springer.
Fazioli, F., Ficuciello, F., Fontanelli, G., Siciliano, B., and
Villani, V. (2016). Implementation of a soft-rigid col-
lision detection algorithm in an open-source engine
for surgical realistic simulation. In IEEE Int. Conf. on
Robotics and Biomimetics, ROBIO’2016, pages 2204–
2208.
Ficuciello, F., Carloni, R., Visser, L., and Stramigioli, S.
(2010). Port-hamiltonian modeling for soft-finger ma-
nipulation. In IEEE Int. Conf. on Intelligent Robots
and Systems, IROS’2010, page 42814286.
Frank, B., Schmedding, R., Stachniss, C., Teschner, M., and
Burgard, W. (2010). Learning the elasticity parame-
ters of deformable objects with a manipulation robot.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1877–1883.
Grieve, T. R., Hollerbach, J. M., and Mascaro, S. A. (2013).
Force prediction by fingernail imaging using active
appearance models. In World Haptics Conference,
pages 181–186.
Hristu, D., Ferrier, N., and Brockett, R. W. (2000). The
performance of a deformable-membrane tactile sen-
sor: basic results on geometrically-defined tasks. In
IEEE International Conference on Robotics and Au-
tomation, pages 508–513.
Kyriazis, N. and Argyros, A. (2013). Physically plausi-
ble 3d scene tracking: The single actor hypothesis.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 9–16.
Largilliere, F., Verona, V., Coevoet, E., Sanz-Lopez, M.,
Dequidt, J., and Duriez, C. (2015). Real-time control
of soft-robots using asynchronous finite element mod-
eling. In IEEE International Conference on Robotics
and Automation, pages 2550–2555.
Mascaro, S. A. and Asada, H. H. (2001). Photoplethysmo-
graph fingernail sensors for measuring finger forces
without haptic obstruction. IEEE Transactions on
Robotics and Automation, 17:698–708.
M
¨
uller, M. and Gross, M. (2004). Interactive virtual mate-
rials. In Graphics Interface, pages 239–246.
Nelder, J. and Mead, R. (1965). A simplex method for func-
tion minimization. The Computer Journal, 7(4):308–
313.
Nesme, M., Payan, Y., and Faure, F. Efficient, physically
plausible finite elements. In Eurographics, pages 77–
80.
Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P.,
Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S.,
Kim, D., and Fitzgibbon, A. (2011). Kinectfusion:
Real-time dense surface mapping and tracking. In
IEEE International Symposium on Mixed and Aug-
mented Reality, pages 127–136.
Oikonomidis, I., Kyriazis, N., and Argyros, A. A. (2011).
Full dof tracking of a hand interacting with an object
by modeling occlusions and physical constraints. In
IEEE International Conference on Computer Vision,
pages 2088–2095.
Petit, A., Lippiello, V., Fontanelli, G. A., and Siciliano, B.
(2017). Tracking elastic deformable objects with an
RGB-D sensor for a pizza chef robot. Robotics and
Autonomous Systems, 88:187–201.
Petit, A., Lippiello, V., and Siciliano, B. (2015a). Real-time
tracking of 3D elastic objects with an RGB-D sensor.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3914–3921.
Petit, A., Lippiello, V., and Siciliano, B. (2015b). Tracking
fractures of deformable objects in real-time with an
RGB-D sensor. In IEEE International Conference on
3D Vision, pages 632–639.
Pham, T.-H., Kheddar, A., Qammaz, A., and Argyros, A. A.
(2015). Towards force sensing from vision: Observing
hand-object interactions to infer manipulation forces.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2810–2819.
Sato, K., Kamiyama, K., Kawakami, N., and Tachi, S.
(2010). Finger-shaped gelforce: sensor for measuring
surface traction fields for robotic hand. IEEE Trans-
actions on Haptics, 3:37–47.
Siciliano, B. and Khatib, O. (2008). Springer handbook of
robotics. Springer Science & Business Media.
Sun, M., Su, H., Savarese, S., and Fei-Fei, L. (2009). A
multi-view probabilistic model for 3d object classes.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1247–1254.
Sun, Y., Hollerbach, J. M., and Mascaro, S. A. (2008). Pre-
dicting fingertip forces by imaging coloration changes
in the fingernail and surrounding skin. IEEE Transac-
tions on Biomedical Engineering, 55:2363–2371.
Urban, S., Bayer, J., Osendorfer, C., Westling, G., Edin,
B. B., and Van Der Smagt, P. (2013). Computing grip
force and torque from finger nail images using gaus-
sian processes. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4034–4039.
Wang, B., Wu, L., Yin, K., Ascher, U., Liu, L., and Huang,
H. (2015). Deformation capture and modeling of soft
objects. ACM Transactions on Graphics, 34:94.
Wang, Y., Min, J., Zhang, J., Liu, Y., Xu, F., Dai, Q., and
Chai, J. (2013). Video-based hand manipulation cap-
ture through composite motion control. ACM Trans-
actions on Graphics, 32:43.
Wettels, N., Fishel, J., Su, Z., Lin, C., and Loeb, G. (2009).
Multi-modal synergistic tactile sensing. In Workshop
on Tactile Sensing in Humanoids, Tactile Sensors and
Beyond, 9th IEEE-RAS International Conference on
Humanoid Robots.
Yousef, H., Boukallel, M., and Althoefer, K. (2011). Tac-
tile sensing for dexterous in-hand manipulation in
robotics. A review. Sensors and Actuators A: Phys-
ical, 167:171–187.
Yuan, W., Li, R., Srinivasan, M. A., and Adelson, E. H.
(2015). Measurement of shear and slip with a gelsight
tactile sensor. In IEEE International Conference on
Robotics and Automation, pages 304–311.
Zhao, W., Zhang, J., Min, J., and Chai, J. (2013). Robust re-
altime physics-based motion control for human grasp-
ing. ACM Transactions on Graphics, 32:207.
Using Physical Modeling and RGB-D Registration for Contact Force Sensing on Deformable Objects
33