Table 10: Feature Selection Classification results: Precision, Recall, F-Measure and RocArea for classifying the feature
resulting of the feature selection process with the features of PI and PA categories, computed with six different classification
algorithms. The Time column represents the time in seconds taken to build the model.
Category Algorithm Precision Recall F-Measure Roc Area Time
J48 0,954 0,984 0,969 0,824 0.36
DecisionStump 0,954 0,984 0,969 0,823 0.05
PI selected HoeffdingTree 0,953 0,985 0,968 0.845 0.41
RandomForest 0,943 0,944 0,943 0.831 15.06
RandomTree 0,943 0,944 0,943 0.774 0.37
REPTree 0,954 0,984 0,969 0.837 0.33
J48 0,958 0,986 0,972 0.870 0.48
DecisionStump 0,957 0,971 0,964 0.830 0.15
PA selected HoeffdingTree 0,957 0,985 0,971 0.882 0.25
RandomForest 0,960 0,986 0,973 0.890 56.67
RandomTree 0,954 0,954 0,954 0.818 0.98
REPTree 0,959 0,985 0,972 0.889 0.74
Bernardi, M. L., Cimitile, M., Di Lucca, G. A., and Maggi,
F. M. (2012). M3d: A tool for the model driven de-
velopment of web applications. In Proceedings of
the Twelfth International Workshop on Web Informa-
tion and Data Management, WIDM ’12, pages 73–80,
New York, NY, USA. ACM.
Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F.,
and Visaggio, C. A. (2015). Effectiveness of opcode
ngrams for detection of multi family android mal-
ware. In Availability, Reliability and Security (ARES),
2015 10th International Conference on, pages 333–
340. IEEE.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2013). A
classifier of malicious android applications. In Avail-
ability, Reliability and Security (ARES), 2013 Eighth
International Conference on, pages 607–614. IEEE.
Chen, K.-T., Pao, H.-K. K., and Chang, H.-C. (2008). Game
bot identification based on manifold learning. In Pro-
ceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games, pages 21–
26. ACM.
Chen, Y.-C., Chen, P. S., Song, R., and Korba, L. (2004).
Online gaming crime and security issue-cases and
countermeasures from taiwan. In PST, pages 131–
136.
Chung, Y., Park, C. Y., Kim, N., Cho, H., Yoon, T. B.,
Lee, H., and Lee, J. (2015). A behavior analysis-based
game bot detection approach considering various play
styles. CoRR, abs/1509.02458.
Francesco, N. D., Lettieri, G., Santone, A., and Vaglini,
G. (2016). Heuristic search for equivalence checking.
Software and System Modeling, 15(2):513–530.
Griffiths, M. D., Davies, M. N., and Chappell, D. (2004).
Online computer gaming: a comparison of adolescent
and adult gamers. Journal of adolescence, 27(1):87–
96.
Hilaire, S., Kim, H.-c., and Kim, C.-k. (2010). How to
deal with bot scum in mmorpgs? In Communica-
tions Quality and Reliability (CQR), 2010 IEEE In-
ternational Workshop Technical Committee on, pages
1–6. IEEE.
Kang, A. R., Jeong, S. H., Mohaisen, A., and Kim, H. K.
(2016). Multimodal game bot detection using user be-
havioral characteristics. SpringerPlus, 5(1):523.
Kashifuji, Y. (2008). Detection of mmorpg bots based on
behavior analysis. ACE, 2008:4.
Kim, H., Hong, S., and Kim, J. (2005). Detection of auto
programs for mmorpgs. In Australasian Joint Con-
ference on Artificial Intelligence, pages 1281–1284.
Springer.
Mishima, Y., Fukuda, K., and Esaki, H. (2013). An anal-
ysis of players and bots behaviors in mmorpg. In
Advanced Information Networking and Applications
(AINA), 2013 IEEE 27th International Conference on,
pages 870–876. IEEE.
Oh, J., Borbora, Z. H., Sharma, D., and Srivastava, J.
(2013). Bot detection based on social interactions in
mmorpgs. In Social Computing (SocialCom), 2013
International Conference On, pages 536–543. IEEE.
Paulson, R. A. and Weber, J. E. (2006). Cyberextortion:
an overview of distributed denial of service attacks
against online gaming companies. Issues in Informa-
tion Systems, 7(2):52–56.
Quandt, T. and Kr
¨
oger, S. (2013). Multiplayer: The social
aspects of digital gaming, volume 3. Routledge.
Seay, A. F., Jerome, W. J., Lee, K. S., and Kraut, R. E.
(2004). Project massive: a study of online gaming
communities. In CHI’04 extended abstracts on Hu-
man factors in computing systems, pages 1421–1424.
ACM.
Thawonmas, R., Kashifuji, Y., and Chen, K.-T. (2008). De-
tection of mmorpg bots based on behavior analysis.
In Proceedings of the 2008 International Conference
on Advances in Computer Entertainment Technology,
pages 91–94. ACM.
Wellman, B. and Gulia, M. (1999). Virtual communities
as communities. Communities in cyberspace, pages
167–194.
Yampolskiy, R. V. and Govindaraju, V. (2008). Embedded
noninteractive continuous bot detection. Computers in
Entertainment (CIE), 5(4):7.
Game Bot Detection in Online Role Player Game through Behavioural Features
59