Computational Statistics & Data Analysis, 93, p.46–
75.
Browne, R.P. and McNicholas, P.D., (2015). A mixture of
generalized hyperbolic distributions. Canadian Jour-
nal of Statistics, 43(2), p.176–198.
Morris, K. and McNicholas, P.D., (2016). Clustering, clas-
sification, discriminant analysis, and dimension re-
duction via generalized hyperbolic mixtures. Compu-
tational Statistics & Data Analysis, 97, p.133–150.
Malsiner-Walli, G., Fr
¨
uhwirth-Schnatter, S., Gr
¨
un, B.,
(2016). Model-based clustering based on sparse finite
Gaussian mixtures. Statistics and computing, 26(1–2),
p.303–324.
Li, R., Wang, Z., Gu, C., Li, F., Wu, H., (2016). A novel
time-of-use tariff design based on Gaussian Mixture
Model. Applied Energy, 162, p.1530–1536.
O’Hagan, A., Murphy, T.B., Gormley, I.C., McNicholas,
P.D., Karlis, D., (2016). Clustering with the multi-
variate normal inverse Gaussian distribution. Compu-
tational Statistics & Data Analysis, 93, p.18–30.
Gupta, M. R. , Chen, Y. (2011). Theory and use of the EM
method. In: Foundations and Trends in Signal Pro-
cessing, vol. 4, 3, p. 223–296.
Scrucca, L. and Raftery, A.E., (2015). Improved initiali-
sation of model-based clustering using Gaussian hi-
erarchical partitions. Advances in data analysis and
classification, 9(4), p.447–460.
Melnykov, V., Melnykov, I. (2012). Initializing the EM al-
gorithm in Gaussian mixture models with an unknown
number of components, Computational Statistics &
Data Analysis, 56(6), p.1381–1395.
Kwedlo, W. (2013). A new method for random initializa-
tion of the EM algorithm for multivariate Gaussian
mixture learning, In: Proceedings of the 8th Inter-
national Conference on Computer Recognition Sys-
tems CORES 2013, (eds. R. Burduk, K. Jackowski,
M. Kurzynski, M. Wozniak, A. Zolnierek), Springer
International Publishing, Heidelberg, p. 81–90.
Shireman, E., Steinley, D. and Brusco, M.J., (2015). Exam-
ining the effect of initialization strategies on the per-
formance of Gaussian mixture modeling. Behavior
research methods, p.1–12.
Maitra, R., (2009). Initializing partition-optimization al-
gorithms. In: IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), 6(1),
p.144–157.
K
´
arn
´
y, M., Kadlec, J., Sutanto, E.L. (1998). Quasi-Bayes
estimation applied to normal mixture, In: Preprints
of the 3rd European IEEE Workshop on Computer-
Intensive Methods in Control and Data Processing
(eds. J. Roj
´
ı
ˇ
cek, M. Vale
ˇ
ckov
´
a, M. K
´
arn
´
y, K. War-
wick), CMP’98 /3./, Prague, CZ, p. 77–82.
Peterka, V. (1981). Bayesian system identification. In:
Trends and Progress in System Identification (ed. P.
Eykhoff), Oxford, Pergamon Press, 1981, p. 239–304.
K
´
arn
´
y, M., B
¨
ohm, J., Guy, T. V., Jirsa, L., Nagy, I., Ne-
doma, P., Tesa
ˇ
r, L. (2006). Optimized Bayesian Dy-
namic Advising: Theory and Algorithms, Springer-
Verlag London.
Nagy, I., Suzdaleva, E., K
´
arn
´
y, M., Mlyn
´
a
ˇ
rov
´
a, T. (2011).
Bayesian estimation of dynamic finite mixtures. Int.
Journal of Adaptive Control and Signal Processing,
vol. 25, 9, p. 765–787.
Suzdaleva, E., Nagy, I., Mlyn
´
a
ˇ
rov
´
a, T. (2015). Recursive
Estimation of Mixtures of Exponential and Normal
Distributions. In: Proceedings of the 8th IEEE In-
ternational Conference on Intelligent Data Acquisi-
tion and Advanced Computing Systems: Technology
and Applications, Warsaw, Poland, September 24–26,
p.137–142.
Casella, G., Berger R.L. (2001). Statistical Inference, 2nd
ed., Duxbury Press.
Nagy, I., Suzdaleva, E., Mlyn
´
a
ˇ
rov
´
a, T. (2016). Mixture-
based clustering non-gaussian data with fixed bounds.
In: Proceedings of the IEEE International conference
Intelligent systems IS’16, p. 265–271.
Suzdaleva, E., Nagy, I., Mlyn
´
a
ˇ
rov
´
a, T. (2016). Expert-based
initialization of recursive mixture estimation. In: Pro-
ceedings of the IEEE International conference Intelli-
gent systems IS’16, p. 308–315.
K
´
arn
´
y, M., Nedoma, P., Khailova, N., Pavelkov
´
a, L.,
(2003). Prior information in structure estimation. In:
IEE Proceedings, Control Theory and Applications,
150(6), pp. 643–653.
Nagy, I., Suzdaleva, E., Pecherkov
´
a, P. (2016). Compa-
rison of Various Definitions of Proximity in Mixture
Estimation. In: Proceedings of the 13th Interna-
tional Conference on Informatics in Control, Automa-
tion and Robotics (ICINCO), p. 527–534
Jain, A. K., (2010). Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8), pp. 651–
666.
ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics
458