REFERENCES
Angeline, P. J. (1998). Evolutionary optimization versus
particle swarm optimization: Philosophy and perfor-
mance differences. pages 601–610.
Ayala, H. V. H. and dos Santos Coelho, L. (2012). Tuning of
pid controller based on a multiobjective genetic algo-
rithm applied to a robotic manipulator. Expert Systems
with Applications, 39(10):8968–8974.
Bansal, J. C., Singh, P., Saraswat, M., Verma, A., Jadon,
S. S., and Abraham, A. (2011). Inertia weight strate-
gies in particle swarm optimization. pages 633–640.
Bekit, B., Seneviratne, L., Whidborne, J., and Althoefer, K.
(1998). Fuzzy pid tuning for robot manipulators. In
Industrial Electronics Society, 1998. IECON’98. Pro-
ceedings of the 24th Annual Conference of the IEEE,
volume 4, pages 2452–2457. IEEE.
Craig, J. J. (2005). Introduction to robotics: mechanics and
control, volume 3. Pearson Prentice Hall Upper Sad-
dle River.
Eberhart, R. and Kennedy, J. (1995). A new optimizer using
particle swarm theory. In Micro Machine and Human
Science, 1995. MHS’95., Proceedings of the Sixth In-
ternational Symposium on, pages 39–43. IEEE.
Forsman, K. and Stattin, A. (1999). A new criterion for
detecting oscillations in control loops. pages 2313–
2316.
H
¨
agglund, T. (1995). A control-loop performance monitor.
Control Engineering Practice, 3(11):1543–1551.
Johnson, M. A. and Moradi, M. H. (2005). PID control.
Springer.
Kapoor, N. and Ohri, J. (2015). Improved pso tuned classi-
cal controllers (pid and smc) for robotic manipulator.
International Journal of Modern Education and Com-
puter Science, 7(1):47.
Kim, E.-J., Seki, K., Iwasaki, M., and Lee, S.-H. (2012).
Ga-based practical auto-tuning technique for indus-
trial robot controller with system identification. IEEJ
Journal of Industry Applications, 1(1):62–69.
Kwok, D. and Sheng, F. (1994). Genetic algorithm and
simulated annealing for optimal robot arm pid con-
trol. In Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceed-
ings of the First IEEE Conference on, pages 707–713.
IEEE.
Llama, A. M., Kelly, R., and Santiba
˜
nez, V. (2001). A stable
motion control system for manipulators via fuzzy self-
tuning. Fuzzy Sets and Systems, 124.
Melek, W. W. and Goldenberg, A. A. (2003). Neuro-
fuzzy control of modular and reconfigurable robots.
IEEE/ASME transactions on mechatronics, 8(3):381–
389.
Nahapetian, N., Motlagh, M. J., and Analoui, M. (2009).
Pid gain tuning using genetic algorithms and fuzzy
logic for robot manipulator control. pages 346–350.
Ouyang, P. and Pano, V. (2015). Comparative study of de,
pso and ga for position domain pid controller tuning.
Algorithms, 8(3):697–711.
Perez, R. and Behdinan, K. (2007). Particle swarm ap-
proach for structural design optimization. Computers
& Structures, 85(19):1579–1588.
Pierezan, J., Ayala, H. H., da Cruz, L. F., Freire, R. Z., and
Coelho, L. d. S. (2014). Improved multiobjective par-
ticle swarm optimization for designing pid controllers
applied to robotic manipulator. In Computational In-
telligence in Control and Automation (CICA), 2014
IEEE Symposium on, pages 1–8. IEEE.
Rezaee Jordehi, A. and Jasni, J. (2013). Parameter selec-
tion in particle swarm optimisation: a survey. Journal
of Experimental & Theoretical Artificial Intelligence,
25(4):527–542.
Shi, Y. and Eberhart, R. C. (1998). Parameter selection in
particle swarm optimization. pages 591–600.
Shi, Y. and Eberhart, R. C. (1999). Empirical study of par-
ticle swarm optimization. 3:1945–1950.
Venter, G. and Sobieszczanski-Sobieski, J. (2003). Particle
swarm optimization. AIAA journal, 41(8):1583–1589.
ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics
40