REFERENCES
Acary, V., Bonnefon, O., and Brogliato, B. (2011). Nons-
mooth modeling and simulation for switched circuits,
volume 69 of Lecture Notes in Electrical Engineering.
Springer, Dordrecht.
Arutyunov, A., Karamzin, D., and Pereira, F. L. (2011). On
a generalization of the impulsive control concept: con-
trolling system jumps. Discrete Contin. Dyn. Syst.,
29(2):403–415.
Aubin, J.-P. and Cellina, A. (1984). Differential inclusions,
volume 264 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathemati-
cal Sciences]. Springer-Verlag, Berlin. Set-valued
maps and viability theory.
Bentsman, J., Miller, B. M., and Rubinovich, E. Y. (2008).
Dynamical systems with active singularities: in-
put/state/output modeling and control. Automatica J.
IFAC, 44(7):1741–1752.
Bentsman, J., Miller, B. M., Rubinovich, E. Y., and
Mazumder, S. K. (2012). Modeling and control of
systems with active singularities under energy con-
straints: single- and multi-impact sequences. IEEE
Trans. Automat. Control, 57(7):1854–1859.
Bentsman, J., Miller, B. M., Rubinovich, E. Y., and Zheng,
K. (2007). Hybrid dynamical systems with controlled
discrete transitions. Nonlinear Anal. Hybrid Syst.,
1(4):466–481.
Branicky, M. S., Borkar, V. S., and Mitter, S. K. (1998).
A unified framework for hybrid control: model and
optimal control theory. IEEE Trans. Automat. Control,
43(1):31–45.
Bressan, A., Han, K., and Rampazzo, F. (2013). On the con-
trol of non holonomic systems by active constraints.
Discrete Contin. Dyn. Syst., 33(8):3329–3353.
Bressan, A. and Rampazzo, F. (1993). On differential sys-
tems with quadratic impulses and their applications
to Lagrangian mechanics. SIAM J. Control Optim.,
31(5):1205–1220.
Bressan, A. and Rampazzo, F. (2010). Moving constraints
as stabilizing controls in classical mechanics. Arch.
Ration. Mech. Anal., 196(1):97–141.
Bressan, A. and Wang, Z. (2009). On the controllability of
Lagrangian systems by active constraints. J. Differen-
tial Equations, 247(2):543–563.
Bressan, Jr., A. and Rampazzo, F. (1994). Impulsive con-
trol systems without commutativity assumptions. J.
Optim. Theory Appl., 81(3):435–457.
Brogliato, B. (2016). Nonsmooth mechanics. Commu-
nications and Control Engineering Series. Springer,
[Cham], third edition. Models, dynamics and control.
Dykhta, V. (1997). Second order necessary optimality
conditions for impulse control problem and multi-
processes. In Singular solutions and perturbations
in control systems (Pereslavl-Zalessky, 1997), IFAC
Proc. Ser., pages 97–101. IFAC, Laxenburg.
Dykhta, V. A. (1990). Impulse-trajectory extension of de-
generated optimal control problems. In The Lya-
punov functions method and applications, volume 8
of IMACS Ann. Comput. Appl. Math., pages 103–109.
Baltzer, Basel.
Dykhta, V. A. and Samsonyuk, O. N. (2000). Optimal-
noe impulsnoe upravlenie s prilozheniyami. Fizmatlit
“Nauka”, Moscow.
Dykhta, V. A. and Samsonyuk, O. N. (2001). The max-
imum principle in nonsmooth optimal impulse con-
trol problems with multipoint phase constraints. Izv.
Vyssh. Uchebn. Zaved. Mat., (2):19–32.
Glocker, C. (2001a). On frictionless impact models in rigid-
body systems. R. Soc. Lond. Philos. Trans. Ser. A
Math. Phys. Eng. Sci., 359(1789):2385–2404. Non-
smooth mechanics.
Glocker, C. (2001b). Set-valued force laws, volume 1 of
Lecture Notes in Applied Mechanics. Springer-Verlag,
Berlin. Dynamics of non-smooth systems.
Goncharova, E. and Staritsyn, M. (2012). Optimization
of measure-driven hybrid systems. J. Optim. Theory
Appl., 153(1):139–156.
Goncharova, E. and Staritsyn, M. (2017). On bv-extension
of asymptotically constrained control-affine systems
and complementarity problem for measure differential
equations. submitted to Discrete Contin. Dyn. Syst.
Goncharova, E. V. and Staritsyn, M. V. (2015). Optimal
impulsive control problem with state and mixed con-
straints: the case of vector-valued measure. Autom.
Remote Control, 76(3):377–384. Translation of Av-
tomat. i Telemekh. 2015, no. 3, 13–21.
Gurman, V. (1991). Extensions and global estimates for
evolutionary discrete control systems. In Modelling
and inverse problems of control for distributed param-
eter systems (Laxenburg, 1989), volume 154 of Lec-
ture Notes in Control and Inform. Sci., pages 16–21.
Springer, Berlin.
Gurman, V. I. (1997a). Printsip rasshireniya v zadachakh
upravleniya. Fizmatlit “Nauka”, Moscow, second edi-
tion.
Gurman, V. I. (1997b). Singularization of control sys-
tems. In Singular solutions and perturbations in con-
trol systems (Pereslavl-Zalessky, 1997), IFAC Proc.
Ser., pages 5–12. IFAC, Laxenburg.
Gurman, V. I. (2004). The method of multiple maxima and
optimality conditions for singular extremals. Differ.
Uravn., 40(11):1486–1493, 1581–1582.
Haddad, W. M., Chellaboina, V., and Nersesov, S. G.
(2006). Impulsive and hybrid dynamical systems.
Princeton Series in Applied Mathematics. Princeton
University Press, Princeton, NJ. Stability, dissipativ-
ity, and control.
Karamzin, D. Y., de Oliveira, V. A., Pereira, F. L., and
Silva, G. N. (2015). On the properness of an impulsive
control extension of dynamic optimization problems.
ESAIM Control Optim. Calc. Var., 21(3):857–875.
Kozlov, V. V. and Treshch
¨
ev, D. V. (1991). Billiards, vol-
ume 89 of Translations of Mathematical Monographs.
American Mathematical Society, Providence, RI. A
genetic introduction to the dynamics of systems with
impacts, Translated from the Russian by J. R. Schu-
lenberger.
ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics
484