
Scheduling Jobs with Releases Dates and Delivery Times on
M Identical Non-idling Machines

Fatma Hermès1 and Khaled Ghédira2
1High Institute of Computer Sciences (ISI), Tunis El Manar University, Ariana, Tunisia

2High Institute of Management (ISG), Tunis University, Tunis, Tunisia

Keywords: Scheduling, Identical Parallel Machines, Non-idling Constraint, Release Dates, Delivery Times, Makespan.

Abstract: This paper considers the problem of scheduling jobs with release dates and delivery times on identical
machines where the machines must work under the non-idling constraint. Indeed, each machine must
process all the jobs affected to it continuously without any intermediate delays. The objective is to minimize
the makespan. This problem is strongly NP-hard since its particular case on only one machine has been
proved to be strongly NP-hard (Chrétienne, 2008). Furthermore, the complexity of the considered problem
where the jobs are unit-time remains an open question (Chrétienne, 2014). Recently, the particular case on
only one non-idling machine has been studied and some efficient classical algorithms proposed to solve the
classic one machine scheduling problem (i.e without adding the non-idling constraint) have been easily
extended to solve its non-idling version (see (Chrétienne, 2008), (Carlier et al., 2010) and (Kacem and
kellerer, 2014)). In this paper, we propose some heuristics to solve the considered machines problem
under the non-idling constraint. We first suggest a generalization of the well known rule of Jackson
(Jackson, 1955) in order to construct feasible schedules. This rule gives priority to the ready jobs with the
greatest delivery time. Then, we extend Potts algorithm (Potts, 1980) which has been proposed to solve the
one machine problem. Finally, we present the results of a computational study which shows that the
proposed heuristics are fast and yields in most tests schedules with relative deviation which is on average
equal to 0,4%.

1 INTRODUCTION

Most scheduling problems have neglected the cost
incurred by machines idle times. Indeed, such
waiting delays are often necessary to get optimality
and making a machine wait for a more urgent job is
a key feature to solve great number of problems (see
for example (Simons, 1983)). However, in various
scheduling environments such as those described in
(Landis, 1983), the machine set up is relatively high
and the cost incurred by machine idle times is often
considerable. For example, if the machine is an oven
that must heat different pieces of work at a given
high temperature, clearly, keeping the required
temperature of the oven while the machine is empty
may be too costly. In this paper, we consider the
problem of scheduling a set of jobs on
identical non-idling machines 2 . Each
job 1 	 has to be processed for units of
time by one machine out of the set of machines and
has a release date (or head) before which it cannot

be started. The job has also a delivery time (or tail)
 that must elapse between its completion on the

machine and its exit from the system. The job is
completed after spending time on one machine
and then time in the system (i.e. not on machine).
Giving, a feasible schedule , let denotes the
completion time of the job . Thus, we have

 where is the starting time of
the job in the scheduling order of . All data are
assumed to be deterministic and integer and all
machines are ready from time zero onwards. The
machines must work under the non-idling constraint
which means that each machine 	 1
must process all the jobs affected to it continuously
without any idle time. The makespan of the schedule

 is then calculated as follows:

max (1)

The schedule is said to be feasible if the following
conditions are satisfied:
 We have for all 1,… , .

82
Hermès, F. and Ghédira, K.
Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines.
DOI: 10.5220/0006428100820091
In Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2017) - Volume 1, pages 82-91
ISBN: 978-989-758-263-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

 Each machine must process at most one job at
one time and no job is processed by more than
one machine.

 There is no idle time between two consecutive
jobs on the same machine. If the job precedes
immediately the job 	on machine 	, then, we
must have, 	.

The rest of the paper is organized as follows: In
section 2, we survey the state of the art. In section 3,
we discuss some dominant sets of solutions (i.e. a set
which must contain at least one optimal solution).
We also expose some conditions for obtaining non-
idling dominant schedules. In section 4, we present
the main results obtained in the literature for the
particular case of one non-idling machine scheduling
problem and then the case of identical non-idling
machines. We finally propose a first heuristic which
constructs a good feasible schedule for the studied
problem using Jackson’s rule. Then, we propose a
second one in order to improve the obtained feasible
schedules. In section 5, we present the lower bounds
used to evaluate the proposed heuristics. In section
6, we present an evaluation of computational tests
and we conclude in section 7.

2 THE STATE OF THE ART

In the 3-field notation | | , the non-idling
constraint is represented in (Chrétienne, 2008) by
the notation associated with the machine field .
Thus, the considered problem is denoted
	 , | , | 	. As mentioned in (Carlier,1987),
the problems , | , | and , | |
(i.e. minimizing the maximum lateness on identical
parallel machines) are equivalent. It is enough to set

 for all ∈ , where 	max
∈

. In the

equivalent form , | | , Jackson's rule
schedules the available job with the smallest due
date instead of scheduling the job with the largest
delivery time.

The problem , | , | is NP-hard in the
strong sense since it is a generalization of the one
machine scheduling problem 1, | , | which
has been proved to be strongly NP-hard in
(Chrétienne, 2008). It is also an extension of the
problem | , | which is also strongly NP-
hard. We note that || and , || are
equivalent since the set of dominant schedules (i.e.
the earliest ones) for the problem || are non-
idling and therefore, the problem , || is
strongly NP-hard and then , | , | is also
NP-hard. However, Carlier deduced in (Carlier,

1987) that when all data are integers and the
processing times are unit (or equal), the classic
problem | 1, , | is solved in
polynomial time using Jackson's rule (Jackson,
1955). Otherwise, the deviation of Jackson's
schedule from the optimum is smaller than twice the
largest processing time. Also, the preemptive
version | , , | is solvable in
polynomial time using a network flow formulation
(Horn, 1974) and gives a tight lower bound for the
classic problem | , | . With adding the non-
idling constraint, the complexity of the problem
, | 1, , | remains unknown (see

Chrétienne, 2014). Also, the preemptive problem
, | , , | is not yet studied and its

complexity is thus unknown.
The non-idling machine constraint has just begun

to receive research attention in the literature and
there are few papers dealing with such problems. To
the best of our knowledge, the first works on such
problems concern the earliness-tardiness one
machine scheduling problem with no unforced idle
time, where a Branch and Bound approach has been
developed in (Valente and Alves, 2005). Recently,
some aspects of the impact of the non-idling
constraint on the complexity of the one machine
scheduling problems as well as the important role
played by the earliest starting time of a non-idling
schedule has been studied in (Chrétienne, 2008).
Moreover, a branch and bound method has been
designed to solve the problem 1, | , | in
(Carlier et al., 2010). In a recent paper (Kacem and
Kellerer, 2014), the authors developed
approximation algorithms for the same problem
1, | , | with extending some classic
results. Another exact method has been presented in
(Jouglet, 2012) where the author defined some
necessary and/or sufficient conditions for obtaining
non-idling dominant sets of schedules (i.e. a
dominant set is a set containing at least one optimal
schedule). He also described a constraint
programming approach for solving exactly the one
non-idling machine scheduling problem with release
dates and optimizing a regular criterion (i.e. an
objective function which is nondecreasing with
respect to all completion times of jobs). We note that
the makespan is a regular criterion.

In the case of parallel non-idling machines, the
first work considering the non-idling constraint are,
to the best of our knowledge, those of (Quilliot and
Chrétienne, 2013) where the authors introduced the
Homogeneously Non-Idling (HNI in short)
constraint. A schedule satisfies the HNI constraint if,
for any subset ′ of machines, the time slots at

Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines

83

which at least one machine of this subset is active
make an interval. They studied the problem where
weakly dependent unit-time jobs have to be
scheduled within the time windows between their
release dates and due dates. They also introduced the
notion of pyramidal structure and provided a
structural necessary and sufficient condition for an
instance of the problem to be feasible. Later,
Chrétienne gave in (Chrétienne, 2014) an overview
of the main results obtained on the complexity of
scheduling under the non-idling constraint for non-
idling one machine scheduling problems and some
cases of non-idling parallel machines scheduling
problems.

3 DOMINANCE RULES

In parallel scheduling, a schedule is represented by
a permutation ̅ , ̅ , … , ̅ where ̅ ̅
⋯ ̅ . In this permutation ̅ denotes the starting
time of the job which is scheduled on the first
available machine. A schedule can also be seen as
a set of sub-schedules , , . . . , where
is the sequence of jobs scheduled on machine and

 the subset of jobs affected to machine . Thus, we
have:

max (2)

where

max ∈ (3)

and

 (4)

A dominant set of solutions (i.e. schedules) is a set
in which there is at least one optimal solution. In this
section we discuss the set of dominant solution with
adding the non-idling constraint.

3.1 The Non-idling Semi-active
Schedule

A non-idling semi-active schedule for the one
machine scheduling problem is defined in (Jouglet,
2012) as a feasible schedule where no job can be
scheduled earlier without either changing the
sequence of execution of jobs or violating a model
constraint including the non-idling constraint. The
set of semi-active is dominant for a regular criterion
which means that there exists at least one optimal
schedule which is semi-active.

In our context, (i.e. identical parallel machines),
the definition of a non-idling semi-active schedule
can be extended as follows.

Definition:
A non-idling semi-active schedule for the problem
, | , | is a feasible schedule where, on

each machine, no job can be scheduled earlier
without either changing the sequence of execution of
jobs or violating a model constraint including the
non-idling constraint. In other words, each sub-
schedule on machine must be a non-idling
semi-active sub-schedule of the correspondent sub-
problem on the set .

The following theorem gives a necessary and
sufficient condition for a non-idling schedule to be
semi-active for a non-idling identical parallel
machines scheduling problem optimizing a regular
criterion.

Theorem 1:
A non-idling schedule for the problem
, | , | is semi-active if, and only if, on

each machine , there is at least one job which starts
at its release date, i.e.

min
∈

	 0 (5)

where is the set of jobs scheduled on machine .

Proof:
If min

∈
	 0 then on machine we can

start earlier with δ min
∈

	 . In this case

the considered schedule will be not semi active. In
other word, if no job starts at its release date in a
non-idling schedule, then on each machine, the jobs
can be scheduled earlier without changing the
sequence of execution of jobs.

Without loss of generality, we suppose that the
release dates are arranged as follows ̅ ̅ ⋯
̅ where ̅ present the � greatest release time. This

date isn’t necessarily the release time of job . An
upper bound of the earliest starting time on
machines in a non-idling semi-active schedule is
provided in the following corollary.

Corollary 1:
The latest starts times for a non-idling semi-active
schedule on machines 1, . . . , are respectively
̅ , , . . . ̅ , ̅ 	 and these bounds are tight.

Proof:
Given the scheduling technique used on parallel
machines, the earliest machine on the set of
machines is the machine 1 and latest one is the

ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics

84

machine . The latest machine cannot start
strictly after ̅ . In fact, if a schedule starts on
machine strictly after ̅ max

∈
	 , then no job

can start at its release date on this machine and then
 is not semi-active. So by induction, the machine

1 cannot start strictly after ̅ , the machine
2 cannot start strictly after ̅ and so on until

the machine 1 which cannot start strictly after
̅ . Moreover, any semi-active schedule whose

first job on machine has the latest release date
starts at ̅ max

∈
 and the first job on machine

1 has the second latest release date starts at
̅ and so on until machine 1 whose first job starts

at ̅ . If all other jobs are scheduled as soon as
possible after these first jobs, then whatever the
sequence the obtained schedule is non-idling semi-
active.

In the same way, a lower bound of the earliest
starting time on machines in a non-idling semi-
active schedule is provided in the following
corollary.

Corollary 2:
The earliest starts times for a non-idling semi-active
schedule on machines 1, . . . , are respectively
, , . . . , and these bounds are tight.

Proof:
If the machine starts at the time ̅ which is the
smallest start time then the second machine cannot
start before ̅ and so on until the machine which
cannot start before ̅ .

It is well known that the subset of semi-active
schedules is dominant (i.e. there exists at least one
optimal non-idling schedule which is semi-active)
for problems with a regular criterion. In the same
way, the following proposition can therefore be
obviously derived.

Proposition 1:
The set of non-idling semi-active schedules is
dominant for non-idling problems where a regular
criterion is to be minimized.

Proof:
In a giving non-idling semi-active schedule, the jobs
are scheduled as early as possible on each machine.

3.2 The Non-idling Active Schedule

A non-idling active for the problem
1, | , | is defined in (Jouglet, 2012) as a
feasible schedule where no job can be completed
earlier without either delaying another job or

violating a model constraint (including the non-
idling constraint). There is an obvious relation
between non-idling semi-active schedules and non-
idling active schedules.

Proposition 2:
A non-idling active schedule is a non-idling semi-
active schedule.

Proof:
Consider a schedule which is not semi-active. A
job may therefore be scheduled earlier without
changing the sequence of$$ jobs and without
violating the non-idling constraint. Consequently,
is not active.

It is well known, that the subset of active schedules
is dominant (i.e. there is at least one optimal
schedule which is non-idling active) for problems
with a regular criterion and the following
propositions may therefore be derived:

Proposition 3:
The set of non-idling active schedules is dominant
for the problem , | , | .

Proof:
Consider a non-idling schedule which minimizes a
regular objective function. If is not active, then
there exists a job which can be scheduled earlier
without violating a model constraint and without
delaying another job. This yields a non-idling
schedule with a cost not greater than that of . The
process is repeated until no such a job exists. Thus
an optimal non-idling active schedule has been
obtained.

The following theorem provides a necessary
condition for a schedule to be a non-idling active
schedule.

Theorem 2:
If is a non-idling active schedule then ∀ ∈ , at
least one of the two following equations is true:

min
∈ : /

 (6)

max , 	 (7)

Proof:
Consider a non-idling active schedule where
Conditions (6) and (7) are not satisfied for a job i.
Since the schedule is active, it is also semi-active,
and a job cannot be scheduled earlier simply by
scheduling the entire schedule earlier. We suppose
that the job is scheduled on machine . In the first

Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines

85

case, we have . In this case, the proof is
similar to that in Jouglet (2012).

Figure 1: A non-idling non-active schedule.

In the second case, we have . Let 	
	 ∈ / be the set of jobs which are
scheduled after the job on the same machine .
Suppose it exist a machine such that 	 	 ∈
/ 	 	 be the set of jobs starting

before 	 , and let ∈ / 	
 be the set of jobs which are

scheduled between jobs belonging to and job
(see Figure 1). If Condition 4 is not satisfied, this
means that min	 ∈ 	 . Thus, job
can be removed from the schedule and the jobs
belonging to can be scheduled units of time
earlier since they are scheduled at least units of
time from their release dates. The non-idling
constraint is thus restored (see figure 2). Indeed, the
jobs belonging to the set can be also scheduled
units of time earlier since ∈ 	 	 	 	 	
	 . Job can then be inserted just after without
delaying subsequent jobs, giving us a non-idling
schedule in which job has been scheduled earlier
without delaying any other job. This contradicts the
fact that is active. Note that the starting times of
jobs belonging to and do not change during
the move of . Note also that if or is empty,
it means that the sub-schedules or can be
simply brought forward from at least units of time
contradicting the fact that is semi-active and then
active.

Figure 2: The schedule obtained after inserting the job
earlier on machine without delaying the other jobs.

The theorem 2 relies on the fact that if the
condition is not satisfied for a schedule , a job
may be inserted earlier without delaying the other
jobs.

4 THE PROPOSED HEURISTICS

The problem 1, | , | is a particular case of
the problem , | , | 	. In this section, we
present the main results obtained in the literature for
the problem 1, | , | 	. Then, we show in a
first heuristic how we can obtain efficient feasible
schedules for the problem , | , | 	. Finally,
we construct a second heuristic by extending an
efficient classic algorithm proposed by Potts (Potts,
1980) to solve the problem 1| , | 	.

4.1 General Points

Some classic algorithms, proposed to solve the
problem 1| , | 	, has been easily extended to
solve its non-idling version 1, | , | 	with
keeping the same efficiency (see (Chrétienne, 2008)
and (Kacem and kellerer, 2014)). According to
(Carlier et al., 2010), to solve the problem
1, | , | 	, we must first adjust the release
dates of all jobs by increasing some ones, then we
apply Jackson’s rule for the modified instance. More
accurately, we first apply Jackson’s rule to the
problem instance. Let denotes the machine ending
time of the schedule obtained after the first
application of Jackson’s rule. A new instance is
generated after transforming the release dates of
each job 1, . . . , as follows:

max , (8)

If we apply again Jackson’s rule for the new
instance, the obtained schedule is non-idling and
thus it is a feasible schedule for the problem
1, | , | 	(Carlier et al., 2010). This solution
is far from the optimal schedule with a distance
smaller than max 	(Chrétienne, 2008) and has
a tight worst-case performance ratio of 2 (Kacem
and kellerer, 2014). To improve the performance of
Jackson’s algorithm for the relaxed problem
1| , | 	, Potts proposed in (Potts, 1980) to run
Jackson’s algorithm at most times to some
modified instances. Potts’s algorithm starts with
Jackson’s sequence. Let 1,2, … , be the
Jackson’s schedule where we suppose that the jobs
are reindexed according to this order and let be the

ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics

86

critical block (i.e. the set of jobs in the critical path).
The job c which attains the maximum completion
time in Jackson’s schedule is called the critical job.
It is the last job in the sequence of . The maximum
completion time of is defined as follows:

min ∈
∈

 (9)

We suppose that is the first job in the block B.
thus, there is no-idle time between the processing of

 to . The sequence of jobs, , 1, … , in the
critical block , represents the critical path. An
interference job is a job in the critical path having
a delivery time smaller than c (). If there is
an interference job , then Pot’s algorithm forced it
to be scheduled after the critical job in the next
iteration by setting . Kacem and kellerer
(Kacem and kellerer, 2013) extended Potts’s
algorithm (Potts, 1980) and proved that it has a tight

worst-case performance ratio of . The non-idling

version of Potts’s algorithm solving the problem
1, | , | is described as follows. It can be
executed in log operations.

We Note also that Chrétienne proved in
(Chrétienne, 2008) that when the preemption of jobs
is allowed or when the jobs are unit-time, the
obtained schedules are respectively optimal for the
problems 1, | , , | and 1, |
1, , | .

NIPotts algorithm for the one machine
problem 1, | , |
Begin

Step 1.
Initialization: 0	; , ,
Step 2.

2.1 Apply Jackson’s rule to the
instance I ;
2.2 Update the current instance I
by applying for each job
1,… , : max , ∑ .
2.3 Apply Jackson’s rule to I and
store the obtained schedule
2.4 Set 1	;

Step 3.
3.1 If or if there is no
interference job in , then
stop and return the best generated
schedule among , , … , .
Otherwise, identify the
interference job and the
critical job c in .
3.2 Set and go to step 2.

End NIPotts

4.2 The Non-idling M Machines
Problem

Jackson’s rule is also used to solve the problem
| , | but there is no extension for its non-

idling version , | , | 	. Carlier proved in
(Carlier, 1987) that a schedule constructed with
applying Jackson’s rule for the problem
| , | is far from the optimal schedule with a

distance smaller than 2 max 1 . Gusfield
(Gusfield, 1984) proved that this solution is far from
the optimal schedule with a distance smaller than

max 	. Thus Gharbi and Haouari

deduced in (Gharbi and Haouari, 2007) that the
constructed solution must be far from the optimal
schedule with a distance smaller than

min 2 max 1 ; max 1 	.

4.2.1 Construction of a Feasible Schedule

In order to construct a good feasible schedule for the
problem , | , | 	, we propose the
following procedure. First, we apply Jackson’s rule
for the relaxed problem | , | 	. Then, we
consider the obtained solution as a set of sub-
schedules , , . . . , where is the
sequence of jobs scheduled on machine and the
subset of jobs affected to machine (⋃).
Thus, we have sub-schedule where is
related to the one machine scheduling problem of
the subset of jobs on machine . So, we can apply
Jackson’s rule to each sub-set as a non-idling one
machine sub-problem. Finally, we can see that as a
result, we have constructed a feasible non-idling
schedule for the identical parallel non-idling
machines problem. The corresponding algorithm is
described below:

NIJSPARA Algorithm for the identical
machines problem , | , |
Begin

Step 1. Initialization:
, , ;

Step 2. Apply Jackson’s rule to the
instance I on machine;
Step 3.

3.1 For from 1 to
Begin

Update the instance by
applying for each job ∈ :

max , ∑ ∈ ;
Apply Jackson’s rule to and
store the obtained subschedule
′ .	 ′ ;

Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines

87

End for
3.2 , … , , … , ;

End NIJSPARA

The algorithm NIJSPARA can be computed in
	 log operations. Indeed, step 1 needs

operation, Step 2 needs log operations and Step3
needs log 	 log ⋯	 	 log
operations where is the number of jobs
attribuated to the machine .

Since, we have log log ⋯
log . . log log , we

deduce that the algorithm NIJSPARA can be
computed in log operations.

4.2.2 Extension of Potts’s Heuristic

We propose below an extension of Pot’s algorithm
for the case of identical parallel machines under the
non-idling constraint. We first construct a feasible
schedule by applying NIJSPAA. Let

, , … , be the obtained schedule. Then, we
find the indice of the critical machine, that is, the
machine having . So, if there is
an interference job on this machine, we update the
instance I as in (Potts, 1984) and we apply again
NIJSPARA.

NIPottsPARA algorithm for the problem
, | , , |

Begin
Step 1. Initialization: 0	;
, ,

Step 2. /*Apply NIJSPAR*/
2.1 Apply Jackson’s rule to the
instance I on m machines;
2.2 For k from 1 to do

Update the instance by
applying for each job ∈ :

max , ∑ ∈ .
Apply Jackson’s rule to and
store the obtained sub-schedule

End for
2.3 Store the obtained schedule
2.4 Set 1	;

Step 3.
3.1 Find the indice of the
critical machine
3.2 If or there is no
interference job in on the
critical machine
Then stop and return the best
generated schedule among
, , … , .

Else, identify the interference
job and the critical job c in

 of .
Set and go to step 2.

End NIPottsPARA

NIPottsPARA can be computed in log
operations since we apply at most times
NIJSPARA which has a complexity of log .

In conclusion, it is easy to see that the algorithms
NIJSPARA and NIPottsPARA construct semi-active
schedules.

5 LOWER BOUNDS

To evaluate the quality of the constructed solutions,
we need lower bound. There is no lower bound in
the literature for the problem , | , | .
However, we deduce the following proposition.

Proposition 4:
The optimal for the problem | , | is a
tight lower bound for the optimal of the
problem , | , | .

Proof:
The non idling constraint is a strong constraint
which needs to delay some jobs to avoid idle time
intervals. Without adding this constraint the set of
earliest schedule is dominant for all regular criteria.
Indeed in this schedule all the jobs are scheduled as
early as possible.

From this proposition we deduce that a lower
bound for the classic problem | , | is also a
lower bound for its non-idling version
, | , | . The first lower bound for the

classic problem | , | is

max (10)

According to (Carlier, 1987), if we associate the data
(, ,) of a one machine problem with the
data (, ,) of an m-machines problem, then the
optimal value of a preemptive solution of the one
machine problem is a lower bound for the problem
| , | . Let be this value which can be

computed in log operations.

5.1 The Preemptive Lower Bound

The problem | , | is strongly NP-hard.
However its preemptive relaxation denoted
| , , | can be computed in polynomial

time using a max-flow formulation as showed in
(Horn, 1974). Given a | , , | instance,

ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics

88

the optimal is obtained after repeatedly
checking the existence of a preemptive schedule
with equal to an integer trial value . If

 and denote a lower bound and upper bound
on the trial value , then the optimal of the
problem a | , , | is computed using a
bisection search on the trial interval , . We
can attribue to the value of max , 	 as
an initial value and to the value obtained with
NIJSPARA. A deadline is associated with each
job ∈ where . Let , . . , be
the set of containing all release dates and deadlines
of all jobs ranked in increasing order. A time
interval � �, � 1 is defined for each �
1,… , 1. Consider the flow network composed
of job nodes , … , , interval nodes

, … , , a source node s and a sink node t. For
each job node 1,… , there is an arc ,
with capacity . For each interval node �	 �
1,… , 1 , there is an arc �, with capacity

� � . There is an arc , � with capacity
� � if and only if � and � . A

preemptive schedule with is defined
as an assignment of portions of processing times of
each job 1,… , to different time interval

�	 � 1,… , 1 . The obtained preemptive
schedule is feasible if and only if the maximum flow
value obtained is equal to ∑ . Let be the
value obtained for the preemptive solution.

5.2 The Semi-preemptive Lower Bound

The preemptive lower bound provides a strong lower
bound for the problem | , | . To the best of
our knowledge, the only lower bound which has
been proved to dominate this bound is the semi
preemptive lower bound introduced in (Haouari and
Gharbi, 2003). This concept was used to derive a
max-flow-based lower bound for the | , | in
order to improve the classic preemptive lower
bound. A semi-preemptive schedule is defined as a
schedule where the fixed parts of jobs are
constrained to start and to finish at fixed times with
no preemption, whereas the free parts can be
preempted.

The semi preemptive lower bound is similar in
spirit to the preemptive lower bound. It consists in
checking the feasibility of a schedule with
equal to a trial value for the corresponding
semi preemptive problem. In a semi preemptive
problem, we first associate, to each job
1,… , a deadline where . Then,
each job satisfying 2 is composed of a

fixed part and a free part. Its fixed part is the amount
of time 2 which must be processed in

, and its free part is the amount of
time ′ which has to be processed
in , ∪ , . The other jobs are
composed only of a free processing part ′
which has to be processed in , . That is, a free
part of any job is ∈ is ′ min ,

. The feasibility of a semi-preemptive schedule
with equal to a trial value can be checked
as follows. Let ∈ , 2 denotes
the set of jobs having a fixed processing part. Let
, , … , be the different values of 	 ∈ ,
	 ∈ , 	 ∈ and 	 ∈ ranked

in increasing order. We denote by the number of
machines which are idle during the time interval

, 1 . In (Haouari and Gharbi,
2003), the authors proposed an extension of Horn’s
approach to solve the feasibility problem. They
consider the flow network composed of job nodes
, , … , , interval nodes , , … , , a

source node s, and a sink node t. For each job node
	 1, . . such that ′ 0, there is an arc ,

with capacity ′ representing the free part of job .
For each 1,… , 1, there is an arc ,
with capacity . There is an arc
, with capacity if and only if one

of the three following conditions holds:
2 , and ; 2 ,

 and , 2 , and
.

To evaluate the proposed heuristics for the
problem , | , | , we use as lower bound
the value of the semi-preemptive schedule. Let
be this value.

6 COMPUTATIONAL RESULTS

We have implemented NIJSPARA and
NIPottsPARA in the programming language C and
we have used an experimental analysis. The
experiments were run on a packard bell intel R core
i5-3230M with 4GB DDR3 Memory. We have also
implemented the different lower bounds described in
section 5. The data set for experiments was
generated in the same way as the data set in [Carlier,
1982]. The tests were randomly generated according
to a uniform distribution for a number of jobs ∈
100, 200, 300, 400, 500 and ∈ 5, 10, 20 . The

jobs processing times were random integers from a
uniform distribution in 1, , the jobs release
dates were random integers from a uniform

Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines

89

distribution in 1, and the jobs delivery times
were random integers from a uniform distribution in
1, . We fix the value of at 50 (
50 and we fix the values of and such

that where

1, 2,… . 30 and 35, 40,… , 60 (36 tests for each
value of and).

Table 1 shows the performance of NIJSPARA
and Table 2 shows the performance of
NIPottsPARA. We provide the average relative gap
produced by each algorithm where the gap is equal
to 100 / . Table 3 shows the
average CPU time of NIPottsPARA. We have
omitted to report the CPU time required by
NIJSPARA because for all of the instances this time
was negligible ((0). NBzero denotes the number
of tests solved optimally in table 1 and 2 and denotes
the number of tests solved with a negligible CPU
time (0 in table 3 for NIPottsPARA.. In fact
NIJSPARA the CPU time is negligible for all
tests.Table 1 provides evidence that NIJSPARA is
fast and effective. Indeed its average relative
deviation from the semi-preemptive lower bound is
equal to 0,4% and 56,85% of tests are solved
optimally on average.

Table 1: Performance of NIJSPARA.

 %NBzero Average Maximum
100 5 47,22 0,71 5,56

 10 69,44 1,02 10,46

 20 58,33 1,54 11,43

200 5 52,78 0,11 0,75

 10 69,44 0,29 3,04

 20 66,67 0,66 9,17

300 5 41,67 0,1 0,67

 10 58,33 0,12 0,98

 20 72,22 0,58 3,95

400 5 38,89 0,07 0,29

 10 41,67 0,2 1,67

 20 58,33 0,43 2,86

500 5 41,67 0,05 0,18

 10 58,33 0,06 1,23

 20 77,78 0,11 1,95

Minimum 38,89 0,05 0,18

Average 56,85 0,4 3,61

Maximum 77,78 1,54 11,43

Table 2: Performance of NIPottsPARA.

 %NBzero Average Maximum
100 5 52,78 0,57 5,56

10 69,44 1,02 10,46
20 58,33 1,54 11,43

200 5 58,33 0,06 0,75
10 75 0,25 3,04
20 66,67 0,66 9,17

300 5 47,22 0,04 0,31
10 61,11 0,08 0,98
20 72,22 0,58 3,95

400 5 41,67 0,05 0,29
10 44,44 0,16 1,67
20 61,11 0,4 2,86

500 5 47,22 0,03 0,12
10 63,89 0,06 1,23
20 80,56 0,1 1,95

Minimum 41,67 0,03 0,12
Average 60 0,37 3,59
Maximum 80,56 1,54 11,43

Table 2 shows that NIPottsPARA improves
slightly the quality of solutions obtained by
NIJSPARA. However, it needs more CPU time than
NIJSPARA. Indeed, 60% of tests are solved
optimally, on average. Also, the average relative
deviation from the semi-preemptive lower bound is
equal to 0,36% . Table 3 shows that the CPU time is
negligeable (0 for this heuristic for 35,74%
tested problems, on average.

We also note that the performance of the
heuristics is improved when the number of jobs is
greater for the two heuristics.

Table 3: The average CPU time of NIPottsPARA in
seconds.

 %NBzero Average Maximum
100 5 55,56 3,04 10,44

10 88,89 0,26 9,51
20 91,67 0 0

200 5 33,33 16,35 41,57
10 41,67 5,24 39,52
20 63,89 0 0

300 5 16,67 49 102,09
10 22,22 31,9 100,23
20 47,22 0 0,02

400 5 19,44 91,7 179,68
10 8,33 65,95 162,92
20 13,89 8,7 156,75

500 5 5,56 137,27 277,43
10 11,11 83,49 274,46
20 16,67 7,22 245,03

Minimum 5,56 0 0
Average 35,74 33,34 106,64
Maximum 91,67 137,27 277,43

ICINCO 2017 - 14th International Conference on Informatics in Control, Automation and Robotics

90

7 CONCLUSIONS

In this paper, we have investigated heuristic
approaches for minimizing makespan subject to
release dates and delivery times under the non-idling
constraint. We have first proposed an heuristic
NIJSPARA in order to construct a feasible non-
idling schedule using Jackson’s rule. Then we have
proved experimentally that the proposed heuristic is
efficient. We have also proposed a second heuristic
NIPottsPARA in order to improve the feasible non-
idling schedule obained by the first heuristic
NIJSPARA. The computational tests proved that
there is a slightly improvement with NIPottsPARA.
This paper presents a first attempt and proposed a
good upper bound and a way to construct feasible
schedules for this type of problem. The
computational results show that the semi preemptive
lower bound is tight. In future research we intend to
use these heuristics as starting solutions either to
propose more efficient heuristics or to develop a
branch and bound in order to built optimal solutions.

REFERENCES

Moore, R., Lopes, J., 1999. Paper templates. In
TEMPLATE’06, 1st International Conference on
Template Production. SCITEPRESS.

Smith, J., 1998. The book, The publishing company.
London, 2nd edition.

Carlier J., 1982. The one-machine sequencing problem.
European Journal of Operational Research, 11: 42-
47.

Carlier J., 1987. Scheduling jobs with release dates and
tails on identical parallel machines to minimize the
makespan. European Journal of operational research,
29: 298–306.

Jacques J., Hermès F., Moukrim A., and Ghédira K. 2010.
An exact resolution of one machine problem with no
machine idle time, Comput. Ind. Eng, 59 (2): 193–199.

Chrétienne P. On single-machine scheduling without
intermediate delay. Discrete Applied Mathematics, 13:
2543–2550, 2008.

Chrétienne P., 2014. On scheduling with the non-idling
constraint. 4OR: Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 12:
101–121.

Frederickson G.N., 1983. Scheduling unit-time tasks with
integer release times and deadlines. Information
Processing Letters, 16: 171–173,

Garey M.R. and Johnson D.S., 1978. Strong NP-
completeness results: Motivation, examples and
implications. Journal of the Association of Computer
Machinery, 25: 499 –508.

Gusfield D., 1984. Bounds for naïve multiple machine

scheding with release times ahd deadlines. Journal of
algorithms, 5: 1-6, 1984.

Haouari M. and Gharbi A., 2003. An improved max-flow
lower bound for minimizing maximum Lateness on
identical parallel machines. Operations Research
Letters, 31: 49-52.

Horn W.A. , 1974. Some simple scheduling algorithms.
Naval Research Logistics Quarterly, 177–185.

Jackson J.R., 1955. Scheduling a production line to
minimize maximum tardiness, Research report 43,
Management Science Research Project Univ. of
California, Los Angeles.

Jouglet A., 2012. Single-machine scheduling with no-idle
time and release dates to minimize a regular criterion.
Journal of Scheduling, 15: 217–238,.

Kacem I., and Kellerer H., 2014. Approximation
algorithms for no idle time scheduling on a single
machine with release times and delivery times.
Discrete Applied Mathematics, 164: 154–160, 2014.

Labetoulle J., Lawler E.L., Lenstra J.K., Rinnooy Kan
A.H.G., 1984. Preemptive scheduling of uniform
machines subject to release dates. In: Pulleyblank,
W.R. (ED.), Progress in Combinatorial Optimization,
Academic Press, New York, 245–261.

Lageweg B.J., Lenstra J.K., and A.H.G. Rinnooy Kan,
1976. Minimizing maximum lateness on one machine:
computational experience and some applications.
Statistica Neerlandica, 30: 25–41, 1976.

Landis K. , 1983. Group Technology and Cellular
Manufacturing in the Westvaco Los Angeles VH
department. Project Report in IOM 581, School of
Business, University of Southern California.

Potts CN., 1980. Analysis of a heuristic for one machine
sequencing with release dates and delivery times.
Operations Research, 28: 1436-1441, 1980.

Quilliot A. and Chrétienne P., 2013. Homogenously non-
idling schedules of unit-time jobs on identical parallel
machines. Discret Appl Math, 161(10-11): 1586-1597.

Simons B., 1983. Multiprocessor scheduling of unit time
jobs with arbitrary release times and deadlines. Siam J.
Comput., volume (12), 294-299.

Valente J.M.S., and Alves R.A.F.S.. 2005. An exact
approach to early/tardy scheduling with release dates.
Comput. Oper. Res., 32: 2905-2917.

Scheduling Jobs with Releases Dates and Delivery Times on M Identical Non-idling Machines

91

