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Abstract: This paper considers the problem of scheduling jobs with release dates and delivery times on  identical 
machines where the machines must work under the non-idling constraint. Indeed, each machine must 
process all the jobs affected to it continuously without any intermediate delays. The objective is to minimize 
the makespan. This problem is strongly NP-hard since its particular case on only one machine has been 
proved to be strongly NP-hard (Chrétienne, 2008). Furthermore, the complexity of the considered problem 
where the jobs are unit-time remains an open question (Chrétienne, 2014). Recently, the particular case on 
only one non-idling machine has been studied and some efficient classical algorithms proposed to solve the 
classic one machine scheduling problem (i.e without adding the non-idling constraint) have been easily 
extended to solve its non-idling version (see (Chrétienne, 2008), (Carlier et al., 2010) and (Kacem and 
kellerer, 2014)). In this paper, we propose some heuristics to solve the considered  machines problem 
under the non-idling constraint. We first suggest a generalization of the well known rule of Jackson 
(Jackson, 1955) in order to construct feasible schedules. This rule gives priority to the ready jobs with the 
greatest delivery time. Then, we extend Potts algorithm (Potts, 1980) which has been proposed to solve the 
one machine problem. Finally, we present the results of a computational study which shows that the 
proposed heuristics are fast and yields in most tests schedules with relative deviation which is on average 
equal to 0,4%. 

1 INTRODUCTION 

Most scheduling problems have neglected the cost 
incurred by machines idle times. Indeed, such 
waiting delays are often necessary to get optimality 
and making a machine wait for a more urgent job is 
a key feature to solve great number of problems (see 
for example (Simons, 1983)). However, in various 
scheduling environments such as those described in 
(Landis, 1983), the machine set up is relatively high 
and the cost incurred by machine idle times is often 
considerable. For example, if the machine is an oven 
that must heat different pieces of work at a given 
high temperature, clearly, keeping the required 
temperature of the oven while the machine is empty 
may be too costly. In this paper, we consider the 
problem of scheduling a set  of  jobs on  
identical non-idling machines 2 . Each 
job  1 	  has to be processed for  units of 
time by one machine out of the set of machines and 
has a release date (or head)  before which it cannot 

be started. The job  has also a delivery time (or tail) 
 that must elapse between its completion on the 

machine and its exit from the system. The job  is 
completed after spending  time on one machine 
and then  time in the system (i.e. not on machine). 
Giving, a feasible schedule , let  denotes the 
completion time of the job . Thus, we have 

 where  is the starting time of 
the job  in the scheduling order of . All data are 
assumed to be deterministic and integer and all 
machines are ready from time zero onwards. The 
machines must work under the non-idling constraint 
which means that each machine 	 1  
must process all the jobs affected to it continuously 
without any idle time. The makespan of the schedule 

 is then calculated as follows: 

max  (1)

The schedule  is said to be feasible if the following 
conditions are satisfied: 
 We have  for all 1,… , . 
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 Each machine must process at most one job at 
one time and no job is processed by more than 
one machine. 

 There is no idle time between two consecutive 
jobs on the same machine. If the job  precedes 
immediately the job 	on machine 	, then, we 
must have, 	. 
 

The rest of the paper is organized as follows: In 
section 2, we survey the state of the art. In section 3, 
we discuss some dominant sets of solutions (i.e. a set 
which must contain at least one optimal solution). 
We also expose some conditions for obtaining non-
idling dominant schedules. In section 4, we present 
the main results obtained in the literature for the 
particular case of one non-idling machine scheduling 
problem and then the case of identical non-idling 
machines. We finally propose a first heuristic which 
constructs a good feasible schedule for the studied 
problem using Jackson’s rule. Then, we propose a 
second one in order to improve the obtained feasible 
schedules. In section 5, we present the lower bounds 
used to evaluate the proposed heuristics. In section 
6, we present an evaluation of computational tests 
and we conclude in section 7. 

2 THE STATE OF THE ART 

In the 3-field notation | | , the non-idling 
constraint is represented in (Chrétienne, 2008) by 
the notation  associated with the machine field . 
Thus, the considered problem is denoted 
	 , | , | 	. As mentioned in (Carlier,1987), 
the problems , | , |  and , | |  
(i.e. minimizing the maximum lateness on identical 
parallel machines) are equivalent. It is enough to set 

 for all ∈ , where 	max
∈

. In the 

equivalent form , | | , Jackson's rule 
schedules the available job with the smallest due 
date instead of scheduling the job with the largest 
delivery time. 

The problem , | , |  is NP-hard in the 
strong sense since it is a generalization of the one 
machine scheduling problem 1, | , |  which 
has been proved to be strongly NP-hard in 
(Chrétienne, 2008). It is also an extension of the 
problem | , |  which is also strongly NP-
hard. We note that ||  and , ||  are 
equivalent since the set of dominant schedules (i.e. 
the earliest ones) for the problem ||  are non-
idling and therefore, the problem , ||  is 
strongly NP-hard and then , | , |  is also 
NP-hard. However, Carlier deduced in (Carlier, 

1987) that when all data are integers and the 
processing times are unit (or equal), the classic 
problem | 1, , |  is solved in 
polynomial time using Jackson's rule (Jackson, 
1955). Otherwise, the deviation of Jackson's 
schedule from the optimum is smaller than twice the 
largest processing time. Also, the preemptive 
version | , , |  is solvable in 
polynomial time using a network flow formulation 
(Horn, 1974) and gives a tight lower bound for the 
classic problem | , | . With adding the non-
idling constraint, the complexity of the problem 
, | 1, , |  remains unknown (see 

Chrétienne, 2014). Also, the preemptive problem 
, | , , |  is not yet studied and its 

complexity is thus unknown. 
The non-idling machine constraint has just begun 

to receive research attention in the literature and 
there are few papers dealing with such problems. To 
the best of our knowledge, the first works on such 
problems concern the earliness-tardiness one 
machine scheduling problem with no unforced idle 
time, where a Branch and Bound approach has been 
developed in (Valente and Alves, 2005). Recently, 
some aspects of the impact of the non-idling 
constraint on the complexity of the one machine 
scheduling problems as well as the important role 
played by the earliest starting time of a non-idling 
schedule has been studied in (Chrétienne, 2008). 
Moreover, a branch and bound method has been 
designed to solve the problem 1, | , |  in 
(Carlier et al., 2010). In a recent paper (Kacem and 
Kellerer, 2014), the authors developed 
approximation algorithms for the same problem 
1, | , |  with extending some classic 
results. Another exact method has been presented in 
(Jouglet, 2012) where the author defined some 
necessary and/or sufficient conditions for obtaining 
non-idling dominant sets of schedules (i.e. a 
dominant set is a set containing at least one optimal 
schedule). He also described a constraint 
programming approach for solving exactly the one 
non-idling machine scheduling problem with release 
dates and optimizing a regular criterion (i.e. an 
objective function which is nondecreasing with 
respect to all completion times of jobs). We note that 
the makespan is a regular criterion. 

In the case of parallel non-idling machines, the 
first work considering the non-idling constraint are, 
to the best of our knowledge, those of (Quilliot and 
Chrétienne, 2013) where the authors introduced the 
Homogeneously Non-Idling (HNI in short) 
constraint. A schedule satisfies the HNI constraint if, 
for any subset ′ of machines, the time slots at 
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which at least one machine of this subset is active 
make an interval. They studied the problem where 
weakly dependent unit-time jobs have to be 
scheduled within the time windows between their 
release dates and due dates. They also introduced the 
notion of pyramidal structure and provided a 
structural necessary and sufficient condition for an 
instance of the problem to be feasible. Later, 
Chrétienne gave in (Chrétienne, 2014) an overview 
of the main results obtained on the complexity of 
scheduling under the non-idling constraint for non-
idling one machine scheduling problems and some 
cases of non-idling parallel machines scheduling 
problems. 

3 DOMINANCE RULES 

In parallel scheduling, a schedule  is represented by 
a permutation ̅ , ̅ , … , ̅  where ̅ ̅
⋯ ̅ . In this permutation ̅  denotes the starting 
time of the  job which is scheduled on the first 
available machine. A schedule  can also be seen as 
a set of sub-schedules , , . . . ,  where  
is the sequence of jobs scheduled on machine  and 

 the subset of jobs affected to machine . Thus, we 
have: 

max  (2)

where 

max ∈  (3)

and 

 (4)

A dominant set of solutions (i.e. schedules) is a set 
in which there is at least one optimal solution. In this 
section we discuss the set of dominant solution with 
adding the non-idling constraint.  

3.1 The Non-idling Semi-active 
Schedule 

A non-idling semi-active schedule for the one 
machine scheduling problem is defined in (Jouglet, 
2012) as a feasible schedule where no job can be 
scheduled earlier without either changing the 
sequence of execution of jobs or violating a model 
constraint including the non-idling constraint. The 
set of semi-active is dominant for a regular criterion 
which means that there exists at least one optimal 
schedule which is semi-active.  

In our context, (i.e. identical parallel machines), 
the definition of a non-idling semi-active schedule 
can be extended as follows. 

Definition: 
A non-idling semi-active schedule for the problem 
, | , |  is a feasible schedule where, on 

each machine, no job can be scheduled earlier 
without either changing the sequence of execution of 
jobs or violating a model constraint including the 
non-idling constraint. In other words, each sub-
schedule  on machine  must be a non-idling 
semi-active sub-schedule of the correspondent sub-
problem on the set . 

The following theorem gives a necessary and 
sufficient condition for a non-idling schedule to be 
semi-active for a non-idling identical parallel 
machines scheduling problem optimizing a regular 
criterion.  

 

Theorem 1: 
A non-idling schedule  for the problem 
, | , |  is semi-active if, and only if, on 

each machine , there is at least one job which starts 
at its release date, i.e. 

min
∈

	 0 (5)

where  is the set of jobs scheduled on machine . 
 

Proof:  
If min

∈
	 0 then on machine  we can 

start earlier with δ min
∈

	 . In this case 

the considered schedule will be not semi active. In 
other word, if no job starts at its release date in a 
non-idling schedule, then on each machine, the jobs 
can be scheduled earlier without changing the 
sequence of execution of jobs. 

 

Without loss of generality, we suppose that the 
release dates are arranged as follows ̅ ̅ ⋯
̅  where ̅  present the � greatest release time. This 

date isn’t necessarily the release time of job . An 
upper bound of the earliest starting time on 
machines in a non-idling semi-active schedule is 
provided in the following corollary. 

Corollary 1:  
The latest starts times for a non-idling semi-active 
schedule on machines 1, . . . ,  are respectively 
̅ , , . . . ̅ , ̅ 	 and these bounds are tight. 

 

Proof:  
Given the scheduling technique used on parallel 
machines, the earliest machine on the set of 
machines is the machine 1 and latest one is the 
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machine . The latest machine  cannot start 
strictly after ̅ . In fact, if a schedule  starts on 
machine  strictly after ̅ max

∈
	 , then no job 

can start at its release date on this machine and then 
 is not semi-active. So by induction, the machine 

1 cannot start strictly after ̅ , the machine 
2 cannot start strictly after ̅  and so on until 

the machine 1 which cannot start strictly after 
̅ . Moreover, any semi-active schedule whose 

first job on machine  has the latest release date 
starts at ̅ max

∈
 and the first job on machine 

1 has the second latest release date starts at 
̅  and so on until machine 1 whose first job starts 

at ̅ . If all other jobs are scheduled as soon as 
possible after these first jobs, then whatever the 
sequence the obtained schedule is non-idling semi-
active. 

In the same way, a lower bound of the earliest 
starting time on machines in a non-idling semi-
active schedule is provided in the following 
corollary. 

 

Corollary 2:  
The earliest starts times for a non-idling semi-active 
schedule on machines 1, . . . ,  are respectively 
, , . . . ,  and these bounds are tight. 

 

Proof:  
If the machine starts at the time ̅  which is the 
smallest start time then the second machine cannot 
start before ̅  and so on until the machine  which 
cannot start before ̅ . 

 

It is well known that the subset of semi-active 
schedules is dominant (i.e. there exists at least one 
optimal non-idling schedule which is semi-active) 
for problems with a regular criterion. In the same 
way, the following proposition can therefore be 
obviously derived. 

 

Proposition 1:  
The set of non-idling semi-active schedules is 
dominant for non-idling problems where a regular 
criterion is to be minimized. 

 

Proof:  
In a giving non-idling semi-active schedule, the jobs 
are scheduled as early as possible on each machine. 

3.2 The Non-idling Active Schedule 

A non-idling active for the problem 
1, | , |  is defined in (Jouglet, 2012) as a 
feasible schedule where no job can be completed 
earlier without either delaying another job or 

violating a model constraint (including the non-
idling constraint). There is an obvious relation 
between non-idling semi-active schedules and non-
idling active schedules. 
 

Proposition 2:  
A non-idling active schedule is a non-idling semi-
active schedule. 
 

Proof:  
Consider a schedule  which is not semi-active. A 
job may therefore be scheduled earlier without 
changing the sequence of$$ jobs and without 
violating the non-idling constraint. Consequently,  
is not active.  
 

It is well known, that the subset of active schedules 
is dominant (i.e. there is at least one optimal 
schedule which is non-idling active) for problems 
with a regular criterion and the following 
propositions may therefore be derived: 
 

Proposition 3:  
The set of non-idling active schedules is dominant 
for the problem  , | , | . 

 

Proof:  
Consider a non-idling schedule  which minimizes a 
regular objective function. If  is not active, then 
there exists a job  which can be scheduled earlier 
without violating a model constraint and without 
delaying another job. This yields a non-idling 
schedule  with a cost not greater than that of . The 
process is repeated until no such a job  exists. Thus 
an optimal non-idling active schedule has been 
obtained.  

 

The following theorem provides a necessary 
condition for a schedule  to be a non-idling active 
schedule. 

 

Theorem 2:  
If  is a non-idling active schedule then ∀ ∈ , at 
least one of the two following equations is true: 

min
∈ : /

 (6)

max , 	 (7)

 

Proof:  
Consider a non-idling active schedule  where 
Conditions (6) and (7) are not satisfied for a job i. 
Since the schedule is active, it is also semi-active, 
and a job cannot be scheduled earlier simply by 
scheduling the entire schedule earlier. We suppose 
that the job  is scheduled on machine . In the first 
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case, we have . In this case, the proof is 
similar to that in Jouglet (2012). 

 

 

Figure 1: A non-idling non-active schedule. 

In the second case, we have . Let 	
	 ∈ /  be the set of jobs which are 
scheduled after the job  on the same machine . 
Suppose it exist a machine  such that 	 	 ∈
/ 	 	  be the set of jobs starting 

before 	 , and let ∈ / 	
 be the set of jobs which are 

scheduled between jobs belonging to  and job  
(see Figure 1). If Condition 4 is not satisfied, this 
means that min	 ∈ 	  . Thus, job  
can be removed from the schedule and the jobs 
belonging to  can be scheduled  units of time 
earlier since they are scheduled at least  units of 
time from their release dates. The non-idling 
constraint is thus restored (see figure 2). Indeed, the 
jobs belonging to the set  can be also scheduled  
units of time earlier since ∈ 	 	 	 	 	
	 . Job  can then be inserted just after  without 
delaying subsequent jobs, giving us a non-idling 
schedule  in which job  has been scheduled earlier 
without delaying any other job. This contradicts the 
fact that  is active. Note that the starting times of 
jobs belonging to  and  do not change during 
the move of . Note also that if  or  is empty, 
it means that the sub-schedules  or  can be 
simply brought forward from at least  units of time 
contradicting the fact that  is semi-active and then 
active. 

 

 

Figure 2: The schedule obtained after inserting the job  
earlier on machine  without delaying the other jobs. 

The theorem 2 relies on the fact that if the 
condition is not satisfied for a schedule , a job  
may be inserted earlier without delaying the other 
jobs. 

4 THE PROPOSED HEURISTICS  

The problem 1, | , |  is a particular case of 
the problem , | , | 	. In this section, we 
present the main results obtained in the literature for 
the problem 1, | , | 	. Then, we show in a 
first heuristic how we can obtain efficient feasible 
schedules for the problem , | , | 	. Finally, 
we construct a second heuristic by extending an 
efficient classic algorithm proposed by Potts (Potts, 
1980) to solve the problem 1| , | 	. 

4.1 General Points 

Some classic algorithms, proposed to solve the 
problem 1| , | 	, has been easily extended to 
solve its non-idling version 1, | , | 	with 
keeping the same efficiency (see (Chrétienne, 2008) 
and (Kacem and kellerer, 2014)). According to 
(Carlier et al., 2010), to solve the problem 
1, | , | 	, we must first adjust the release 
dates of all jobs by increasing some ones, then we 
apply Jackson’s rule for the modified instance. More 
accurately, we first apply Jackson’s rule to the 
problem instance. Let  denotes the machine ending 
time of the schedule obtained after the first 
application of Jackson’s rule. A new instance is 
generated after transforming the release dates of 
each job 1, . . . ,  as follows: 

max ,  (8)

If we apply again Jackson’s rule for the new 
instance, the obtained schedule is non-idling and 
thus it is a feasible schedule for the problem 
1, | , | 	(Carlier et al., 2010). This solution 
is far from the optimal schedule with a distance 
smaller than max 	(Chrétienne, 2008) and has 
a tight worst-case performance ratio of 2 (Kacem 
and kellerer, 2014). To improve the performance of 
Jackson’s algorithm for the relaxed problem 
1| , | 	, Potts proposed in (Potts, 1980) to run 
Jackson’s algorithm at most  times to some 
modified instances. Potts’s algorithm starts with 
Jackson’s sequence. Let 1,2, … ,  be the 
Jackson’s schedule where we suppose that the jobs 
are reindexed according to this order and let  be the 
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critical block (i.e. the set of jobs in the critical path). 
The job c which attains the maximum completion 
time in Jackson’s schedule is called the critical job. 
It is the last job in the sequence of . The maximum 
completion time of  is defined as follows: 

min ∈
∈

 (9)

We suppose that  is the first job in the block B. 
thus, there is no-idle time between the processing of 

 to . The sequence of jobs, , 1, … ,  in the 
critical block , represents the critical path. An 
interference job  is a job in the critical path having 
a delivery time smaller than c ( ). If there is 
an interference job , then Pot’s algorithm forced it 
to be scheduled after the critical job  in the next 
iteration by setting . Kacem and kellerer 
(Kacem and kellerer, 2013) extended Potts’s 
algorithm (Potts, 1980) and proved that it has a tight 

worst-case performance ratio of . The non-idling 

version of Potts’s algorithm solving the problem 
1, | , |  is described as follows. It can be 
executed in log  operations. 

We Note also that Chrétienne proved in 
(Chrétienne, 2008) that when the preemption of jobs 
is allowed or when the jobs are unit-time, the 
obtained schedules are respectively optimal for the 
problems 1, | , , |  and 1, |
1, , |  . 

 
NIPotts algorithm for the one machine 
problem 1, | , |  
Begin 

Step 1.  
Initialization: 0	; , ,  
Step 2.  

2.1 Apply Jackson’s rule to the 
instance I ;  
2.2 Update the current instance I 
by applying for each job   
1,… , : max , ∑ . 
2.3 Apply Jackson’s rule to I and 
store the obtained schedule  
2.4 Set 1	; 

Step 3.  
3.1 If  or if there is no 
interference job in , then 
stop and return the best generated 
schedule among , , … , . 
Otherwise, identify the 
interference job  and the 
critical job c in . 
3.2 Set  and go to step 2. 

End NIPotts 

4.2 The Non-idling M Machines 
Problem 

Jackson’s rule is also used to solve the problem 
| , |  but there is no extension for its non-

idling version , | , | 	. Carlier  proved in 
(Carlier, 1987) that a schedule constructed with 
applying Jackson’s rule for the problem 
| , |  is far from the optimal schedule with a 

distance smaller than 2 max 1 . Gusfield 
(Gusfield, 1984) proved that this solution is far from 
the optimal schedule with a distance smaller than 

max 	. Thus Gharbi and Haouari 

deduced in (Gharbi and Haouari, 2007) that the 
constructed solution must be far from the optimal 
schedule with a distance smaller than 

min 2 max 1 ; max 1 	. 

4.2.1 Construction of a Feasible Schedule 

In order to construct a good feasible schedule for the 
problem , | , | 	, we propose the 
following procedure. First, we apply Jackson’s rule 
for the relaxed problem | , | 	. Then, we 
consider the obtained solution  as a set of sub-
schedules , , . . . ,  where  is the 
sequence of jobs scheduled on machine  and  the 
subset of jobs affected to machine  (⋃ ).  
Thus, we have  sub-schedule  where  is 
related to the one machine scheduling problem of 
the subset of jobs  on machine . So, we can apply 
Jackson’s rule to each sub-set  as a non-idling one 
machine sub-problem. Finally, we can see that as a 
result, we have constructed a feasible non-idling 
schedule for the identical parallel non-idling 
machines problem. The corresponding algorithm is 
described below: 
 
NIJSPARA Algorithm for the identical 
machines problem , | , |  
Begin  

Step 1. Initialization: 
, ,  ; 

Step 2. Apply Jackson’s rule to the 
instance I on  machine;   
Step 3.  

3.1 For  from 1 to   
Begin  

Update the instance  by 
applying for each job  ∈ : 

max , ∑ ∈ ; 
Apply Jackson’s rule to  and 
store the obtained subschedule 
′ .	 ′ ; 
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End for 
3.2 , … , , … , ; 

End NIJSPARA 
 

The algorithm NIJSPARA can be computed in 
	 log  operations. Indeed, step 1 needs  

operation, Step 2 needs log  operations and Step3 
needs log 	 log ⋯	 	 log  
operations where  is the number of jobs 
attribuated to the machine . 

Since, we have log log ⋯
log . . log log , we 

deduce that the algorithm NIJSPARA can be 
computed in log  operations.  

4.2.2 Extension of Potts’s Heuristic 

We propose below an extension of Pot’s algorithm 
for the case of identical parallel machines under the 
non-idling constraint. We first construct a feasible 
schedule by applying NIJSPAA. Let 

, , … ,   be the obtained schedule. Then, we 
find the indice  of the critical machine, that is, the 
machine having . So, if there is 
an interference job on this machine, we update the 
instance I as in (Potts, 1984) and we apply again 
NIJSPARA. 
 
NIPottsPARA algorithm for the problem 
, | , , |  

Begin 
Step 1. Initialization: 0	; 
, ,   

Step 2. /*Apply NIJSPAR*/ 
2.1 Apply Jackson’s rule to the 
instance I on m machines;  
2.2 For k from 1 to  do  

Update the instance  by 
applying for each job  ∈ : 

max , ∑ ∈  . 
Apply Jackson’s rule to  and 
store the obtained sub-schedule 
 

End for 
2.3 Store the obtained schedule   
2.4 Set 1	; 

Step 3.  
3.1 Find the indice  of the 
critical machine 
3.2 If  or there is no 
interference job in  on the 
critical machine   
Then stop and return the best 
generated schedule among 
, , … , . 

Else, identify the interference 
job  and the critical job c in 

 of .  
Set  and go to step 2. 

End NIPottsPARA 
 

NIPottsPARA can be computed in log  
operations since we apply at most  times 
NIJSPARA which has a complexity of log . 

In conclusion, it is easy to see that the algorithms 
NIJSPARA and NIPottsPARA construct semi-active 
schedules. 

5 LOWER BOUNDS 

To evaluate the quality of the constructed solutions, 
we need lower bound. There is no lower bound in 
the literature for the problem , | , |  . 
However, we deduce the following proposition. 
 

Proposition 4:  
The optimal  for the problem | , |  is a 
tight lower bound for the optimal  of the 
problem , | , | . 

 

Proof:  
The non idling constraint is a strong constraint 
which needs to delay some jobs to avoid idle time 
intervals. Without adding this constraint the set of 
earliest schedule is dominant for all regular criteria. 
Indeed in this schedule all the jobs are scheduled as 
early as possible. 

From this proposition we deduce that a lower 
bound for the classic problem | , |  is also a 
lower bound for its non-idling version 
, | , | . The first lower bound for the 

classic problem | , |  is 

max  (10)

According to (Carlier, 1987), if we associate the data 
( , , ) of a one machine problem with the 
data ( , , ) of an m-machines problem, then the 
optimal value of a preemptive solution of the one 
machine problem is a lower bound for the problem 
| , | .  Let  be this value which can be 

computed in log  operations. 

5.1 The Preemptive Lower Bound 

The problem | , |  is strongly NP-hard. 
However its preemptive relaxation denoted 
| , , |  can be computed in polynomial 

time using a max-flow formulation as showed in 
(Horn, 1974). Given a | , , |  instance, 
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the optimal  is obtained after repeatedly 
checking the existence of a preemptive schedule 
with  equal to an integer trial value . If 

 and  denote a lower bound and upper bound 
on the trial value  , then the optimal  of the 
problem a | , , |  is computed using a 
bisection search on the trial interval , . We 
can attribue to  the value of max , 	  as 
an initial value and to  the value obtained with 
NIJSPARA. A deadline  is associated with each 
job ∈  where . Let , . . ,  be 
the set of  containing all release dates and deadlines 
of all jobs ranked in increasing order. A time 
interval � �, � 1  is defined for each �
1,… , 1. Consider the flow network composed 
of job nodes , … , , interval nodes 

, … , , a source node s and a sink node t. For 
each job node  1,… ,  there is an arc ,  
with capacity . For each interval node �	 �
1,… , 1 , there is an arc �,  with capacity 

� � . There is an arc , �  with capacity 
� � if and only if � and � . A 

preemptive schedule with  is defined 
as an assignment of portions of processing times of 
each job 1,… ,  to different time interval 

�	 � 1,… , 1 . The obtained preemptive 
schedule is feasible if and only if the maximum flow 
value obtained is equal to ∑ . Let  be the 
value obtained for the preemptive solution. 

5.2 The Semi-preemptive Lower Bound 

The preemptive lower bound provides a strong lower 
bound for the problem | , | . To the best of 
our knowledge, the only lower bound which has 
been proved to dominate this bound is the semi 
preemptive lower bound introduced in (Haouari and 
Gharbi, 2003). This concept was used to derive a 
max-flow-based lower bound for the | , |  in 
order to improve the classic preemptive lower 
bound. A semi-preemptive schedule is defined as a 
schedule where the fixed parts of jobs are 
constrained to start and to finish at fixed times with 
no preemption, whereas the free parts can be 
preempted. 

The semi preemptive lower bound is similar in 
spirit to the preemptive lower bound. It consists in 
checking the feasibility of a schedule with  
equal to a trial value  for the corresponding 
semi preemptive problem. In a semi preemptive 
problem, we first associate, to each job  
1,… ,  a deadline  where .  Then, 
each job  satisfying 2  is composed of a 

fixed part and a free part. Its fixed part is the amount 
of time 2   which must be processed in 

,  and its free part is the amount of 
time ′  which has to be processed 
in , ∪ , . The other jobs are 
composed only of a free processing part ′  
which has to be processed in , . That is, a free 
part of any job is ∈  is ′ min ,

. The feasibility of a semi-preemptive schedule 
with  equal to a trial value  can be checked 
as follows. Let ∈ , 2  denotes 
the set of jobs having a fixed processing part. Let 
, , … ,  be the different values of 	 ∈ , 
	 ∈ , 	 ∈  and 	 ∈  ranked 

in increasing order. We denote by  the number of 
machines which are idle during the time interval 

,  1 . In (Haouari and Gharbi, 
2003), the authors proposed an extension of Horn’s 
approach to solve the feasibility problem. They 
consider the flow network composed of job nodes 
, , … , , interval nodes , , … , , a 

source node s, and a sink node t. For each job node 
	 1, . .  such that ′ 0, there is an arc ,  

with capacity ′  representing the free part of job . 
For each 1,… , 1, there is an arc ,  
with capacity . There is an arc 
,  with capacity  if and only if one 

of the three following conditions holds: 
2 ,  and ; 2 , 

 and  , 2 ,  and 
.  

To evaluate the proposed heuristics for the 
problem , | , | , we use as lower bound 
the value of the semi-preemptive schedule. Let  
be this value. 

6 COMPUTATIONAL RESULTS 

We have implemented NIJSPARA and 
NIPottsPARA in the programming language C and 
we have used an experimental analysis. The 
experiments were run on a packard bell intel R core 
i5-3230M with 4GB DDR3 Memory. We have also 
implemented the different lower bounds described in 
section 5. The data set for experiments was 
generated in the same way as the data set in [Carlier, 
1982]. The tests were randomly generated according 
to a uniform distribution for a number of jobs ∈
100, 200, 300, 400, 500  and ∈ 5, 10, 20 . The 

jobs processing times were random integers from a 
uniform distribution in 1, , the jobs release 
dates were random integers from a uniform 
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distribution in 1,  and the jobs delivery times 
were random integers from a uniform distribution in 
1, . We fix the value of  at 50 (
50  and we fix the values of  and   such 

that  where 

1, 2,… . 30 and 35, 40,… , 60 (36 tests for each 
value of  and ). 

Table 1 shows the performance of NIJSPARA 
and Table 2 shows the performance of 
NIPottsPARA. We provide the average relative gap 
produced by each algorithm where the gap is equal 
to 100 / . Table 3 shows the 
average CPU time of NIPottsPARA. We have 
omitted to report the CPU time required by 
NIJSPARA because for all of the instances this time 
was negligible (( 0). NBzero denotes the number 
of tests solved optimally in table 1 and 2 and denotes 
the number of tests solved with a negligible CPU 
time  ( 0  in table 3 for NIPottsPARA.. In fact 
NIJSPARA the CPU time is negligible for all 
tests.Table 1 provides evidence that NIJSPARA is 
fast and effective. Indeed its average relative 
deviation from the semi-preemptive  lower bound is 
equal to 0,4% and 56,85% of tests are solved 
optimally on average.  

Table 1: Performance of NIJSPARA. 

  %NBzero Average Maximum 
100 5 47,22 0,71 5,56 

 10 69,44 1,02 10,46 

 20 58,33 1,54 11,43 

200 5 52,78 0,11 0,75 

 10 69,44 0,29 3,04 

 20 66,67 0,66 9,17 

300 5 41,67 0,1 0,67 

 10 58,33 0,12 0,98 

 20 72,22 0,58 3,95 

400 5 38,89 0,07 0,29 

 10 41,67 0,2 1,67 

 20 58,33 0,43 2,86 

500 5 41,67 0,05 0,18 

 10 58,33 0,06 1,23 

 20 77,78 0,11 1,95 

Minimum  38,89 0,05 0,18 

Average  56,85 0,4 3,61 

Maximum  77,78 1,54 11,43 

Table 2: Performance of NIPottsPARA. 

  %NBzero Average Maximum 
100 5 52,78 0,57 5,56

10 69,44 1,02 10,46
20 58,33 1,54 11,43 

200 5 58,33 0,06 0,75
10 75 0,25 3,04
20 66,67 0,66 9,17

300 5 47,22 0,04 0,31
10 61,11 0,08 0,98
20 72,22 0,58 3,95

400 5 41,67 0,05 0,29
10 44,44 0,16 1,67
20 61,11 0,4 2,86

500 5 47,22 0,03 0,12 
10 63,89 0,06 1,23
20 80,56 0,1 1,95

Minimum 41,67 0,03 0,12 
Average 60 0,37 3,59
Maximum 80,56 1,54 11,43 

 

Table 2 shows that NIPottsPARA improves 
slightly the quality of solutions obtained by 
NIJSPARA. However, it needs more CPU time than 
NIJSPARA. Indeed, 60% of tests are solved 
optimally, on average. Also, the average relative 
deviation from the semi-preemptive  lower bound is 
equal to 0,36% . Table 3 shows that the CPU time is 
negligeable ( 0  for this heuristic for 35,74% 
tested problems, on average. 

We also note that the performance of the 
heuristics is improved when the number of jobs is 
greater for the two heuristics. 

Table 3: The average CPU time of NIPottsPARA in 
seconds. 

  %NBzero Average Maximum 
100 5 55,56 3,04 10,44

10 88,89 0,26 9,51
20 91,67 0 0 

200 5 33,33 16,35 41,57
10 41,67 5,24 39,52
20 63,89 0 0

300 5 16,67 49 102,09
10 22,22 31,9 100,23
20 47,22 0 0,02

400 5 19,44 91,7 179,68
10 8,33 65,95 162,92
20 13,89 8,7 156,75

500 5 5,56 137,27 277,43
10 11,11 83,49 274,46
20 16,67 7,22 245,03

Minimum 5,56 0 0
Average 35,74 33,34 106,64
Maximum 91,67 137,27 277,43
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7 CONCLUSIONS 

In this paper, we have investigated heuristic 
approaches for minimizing makespan subject to 
release dates and delivery times under the non-idling 
constraint. We have first proposed an heuristic 
NIJSPARA in order to construct a feasible non-
idling schedule using Jackson’s rule. Then we have 
proved experimentally that the proposed heuristic is 
efficient. We have also proposed a second heuristic 
NIPottsPARA in order to improve the feasible non-
idling schedule obained by the first heuristic 
NIJSPARA. The computational tests proved that 
there is a slightly improvement with NIPottsPARA. 
This paper presents a first attempt and proposed a 
good upper bound and a way to construct feasible 
schedules for this type of problem. The 
computational results show that the semi preemptive 
lower bound is tight. In future research we intend to 
use these heuristics as starting solutions either to 
propose more efficient heuristics or to develop a 
branch and bound in order to built optimal solutions. 
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