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Abstract: As examples of computationally cheap and robust sensors the eyes of a fly are well known in literature. 
Attempts to replicate the function of the eye in electronic technology has resulted in several algorithms and 
implementations based on those algorithms.  These implementations are either impractical for industrial use 
or use costly Application Specific Integrated Circuits. In an attempt to use a low-cost Commercial off the 
Shelf camera as a sensor in a real-world robot navigation use-case we investigate two commonly used 
algorithms and find them unsuitable. We develop a new algorithm – the Distance of Travel algorithm – show 
its suitability and investigate its properties in both simulation and practical experiments.   

1 INTRODUCTION 

A Motivation 

Mobile robots working in semi-structured 
environments co-habited with humans will need to 
travel at variable speeds and trajectories and perform 
collision avoidance including subsequent re-routing 
should the chose path be blocked. In other words they 
must be capable of (micro-) autonomous activity 
within the scope of a defined mission (macro-activity) 
within set deadlines. The body of work presented here 
belongs firmly in the domain of bio-inspired 
engineering where we seek to achieve lower 
computational cost and higher robustness by the 
emulation of biological examples as opposed to more 
traditional state-space oriented engineering. We do 
this in the knowledge that the performance of the robot 
may not be as efficient as a state-space based design 
and that work is required to make robot behaviour 
predictable so that humans know when and how to 
respond to an approaching robot.  

The motivation for this body of work was to 
explore the practical ramifications of using biological 
precedence, the eye of a fly, in autonomous robots 
designed for practical purposes – in this case delivery 
along an office corridor. The fly eye has been well-
studied over the last sixty years and can boast multiple 

implementations is thus well-understood and hence a 
good example of a bio-inspired algorithm.  

Much of the implementation work replicates the 
fly eye in a low-pixel count ASIC (Application 
Specific Integrated Circuit) and often in the context of 
drones. Our understanding of the use-case includes 
recognition of the fact that mobile robots will use a 
camera not only to perform low level navigational 
duties but also for high-level image processing tasks, 
a scenario precluded by single-function ASIC-based 
sensors. We are unaware of any fly-eye 
implementations on low-cost COTS (Commercial off 
the Shelf) camera so the novelty of our paper is 
therefore to analyse and implement a fly-eye 
algorithm on this class of platform.  

Fly-eye algorithms can be categorised into four 
general types which we analysed and found wanting 
in various aspects. Response linearity at higher (robot) 
velocities is a common factor so we developed, 
simulated and implemented a new algorithm which we 
called the Distance of Travel Algorithm. It can be 
shown that the algorithm functions with better 
linearity of response at lower sampling rates that the 
reference algorithms and is better suited for use in the 
use-case we are working towards.  

This paper is structured accordingly. We finish this 
section by discussing the related work, methodology 
and algorithms. The next section describes the 
simulation of standard algorithms we chose to 
implement. Section III discusses the Distance of 
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Travel (DoT) algorithm and simulations on it. Section 
IV discusses the practical implementation of the DoT 
algorithm and the final section draws conclusions and 
proposes future work. 

B Related Work 

Scientists have been examining the perception and 
navigation of insects in general and the fly in 
particular, for some 60 years and this has led to much 
work in replicating capabilities in technology. There 
is a substantial body of literature, including summaries 
to be found in this area of which Franceschini 
(Franceschini, 2014) is a leading example. Literature 
summarises the algorithms used in replicating the 
vision system in technology (Sirnivasan, 1999) and 
summaries of published work detailing future trends / 
Orchard, 2014.)  The field is divided into several 
distinct strands of research. Biological research 
generating replicable models was notably achieved by 
Hassenstein and Reichardt (Hassenstein, 1961) with 
their description of the Elementary Motion Detector 
(EMD - Figure 1) and continued with various 
elaborations or contrasting models such as the Barlow 
and Levick model (1965) or the Watson and Ahumada 
model (1985.) Engineering research has replicated 
these models using a variety of algorithms, largely 
using an analogue electronics approach. Initial work 
in this area (Tanner, 1986) set the tone for a largely 
analogue replication of the biological models 
(Harrison, 1999), (Pant, 2004), and (Roubieu, 2013.)  

However engineering research has been by and 
large unable to look past the EMD and the attempt to 
optimally replicate it has resulted in the attempt to 
build neurological detectors (Higgins, 2000.) In 
contrast there has been little work done to explicitly 
apply the principles to CMOS detectors. Arreguit 
(1996) builds of a pointing device on a CMOS chip 
whereas Basch (2010, 2011) use of standard imagers 
to build Hassenstein-Reichardt based collision 
detectors stand out in an otherwise sparsely occupied 
literature canon. 

C Methodology  

Current published (research) solutions use anywhere 
from 8 to 254 pixels to build EMDs and it is perfectly 
acceptable to predict that these devices are capable of 
being industrialised at prices amenable to them 
becoming a standard low-cost, low-complexity sensor 
used in robot-construction. 

Given that robot vision is still research-in-
progress, especially in the higher strata beyond object 
recognition towards perception, it is also reasonable to 

expect that CMOS-based vision systems will be 
expected to provide the data to perform several tasks, 
quite probably in parallel and possibly hardware off-
loaded to ASIC or Field Programmable Gate Arrays 
(FPGA) devices. Auto-speed detection using a fly-eye 
algorithm of low computational cost and promising 
high robustness is a low-level task that can intuitively 
be mapped to a CMOS camera. This idea is 
strengthened by the fact that a CMOS camera can 
deliver the data for 3D speed detection, something we 
have not yet seen in ASICs produced by research. 

From this background an appropriate methodology 
would be to choose an algorithm to implement, prove 
the use-case in software and measure the real-time 
properties of the solution to decide whether hardware 
offloading is necessary or beneficial.  

D Algorithms 

The EMD is a unidirectional unit that measures the 
time taken from the detection of an intensity-
recognised feature by the first receptor to its detection 
by the second receptor. This time represents a metric 
for the speed of movement. 

 

Figure 1: Elementary Motion Detector (EMD) according to 
Harrison (Basch et al., 2011). 

The mechanisms whereby this is achieved in flies 
and modelled for replication in technology have been 
extensively researched to the extent that the technical 
implementations (Floreano, 2009) have been divided 
into two methodologies of each two categories (Figure 
2.) The methodologies are intensity based and token 
based and subdivided into categories of gradient and 
correlation methodologies and the correlation and 
time-of-travel based methodologies respectively. 

We place value on low computational and resource 
expense and used this as the primary criteria  
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Figure 2: Categorisation of fly-eye based navigation 
algorithms (Barlow and Levick, 1965). 

for examining the different algorithms. The gradient 
methodology was deemed to be computationally 
expensive whereas the published correlation/token-
based methodologies require substantial memory 
resources and so were also excluded from further 
consideration. We chose the publications from 
Harrison and Koch (1999) who applied intensity based 
correlation using the Hassenstein-Reichardt principle 
and from Roubieu et al., (2013) who applied token 
based methods, as the most promising role-models and 
used them in further evaluation. 

2 SIMULATION OF KNOWN 
ALGORITHMS 

Further evaluation consisted of implementing and 
performing tests on these two algorithms in Matlab. 
We applied the general motion detection model, the 
EMD defined as two photoreceptors, as the input 
source. The outputs of the algorithms are based on the 
response measured between two photoreceptors – 
with a preferred direction. The optical space covered 
by a single photoreceptor is generally quite large so 
in the simulations these receptors are assembled from 
a number of pixels of the image/camera as shown in 
Figure 3 where a receptor was made up of an averaged 
5*5 array of pixels.  

 
Figure 3: Assembling receptors from camera pixels. 

Testing real-time response of vision-algorithms is 
difficult at the best of times and generally achieved 
by using patterns of some sort. Regular patterns such 
as square waves (black and white bars) and sinusoidal 
(white to black via a grey scale) are commonly used 

and are useful for matching actual to predicted 
behaviour. For our use-case the material used for 
walls must also be considered so several different 
patterns were used. Results shown in this paper are 
generally derived from black-white vertical bars 
(square wave) and a randomly chosen concrete 
pattern (Figure 4,) which represents a stochastic 
signal.  

We tested the algorithms by passing the patterns 
in front of the receptors at a number of constant 
velocities. To achieve this a script was programmed 
to produce 500 copies of a test pattern with each copy 
differing from the previous by a shift equivalent to the 
velocity the receptor is intended to be subjected to. By 
passing these pattern sequences at discrete intervals 
in front of the receptors – and allowing the algorithm 
to perform after being exposed to one shifted image – 
the speed of passing a pattern could be precisely 
simulated free of any real-time and computing-time 
restraints imposed by the test platform.  

Figure 4: Black and white (left) and concrete (right) patterns 
for simulation of tokens. 

A Hassenstein – Reichardt Detection  

For the Hassenstein-Reichardt detector the 
configuration of the fly-eye assembled from camera 
pixels was determined as follows: 

Table 1: Fly-Eye Parameters for the Hassenstein-Reichardt 
detector. 

Parameter Value 

Distance between 
receptors (αr) 

4° 

Mask Size 43 Pixels 

Number of receptors 12 Receptors 

After implementation in Matlab the first 
simulation was carried through with a sample time of 
20 ms and it can be seen that good linear response of 
estimated velocity can be achieved up to an actual 
velocity of about 3 rad/s when the measured and 
actual velocities diverge (Figure 5.) This simulation 
was repeated at the faster sampling rate of 5 ms 
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(Figure 6) and the linearity of the response to the 
actual velocity is considerably better. Low cost 
cameras generally deliver images at frame rates of up 
to 60 fps, equivalent to a sampling rate of 16 ms, so 
we surmise the Hassenstein-Richardt does not appear 
to be suited for implementation on such a camera. 

B Time of Travel Algorithm 

The same procedure was repeated for the time of 
travel algorithm (ToT) proposed by Roubieu (2013.) 
The parameters for this simulation were set at the 
values given in Table 2.  

Table 2: Fly-Eye Parameters for the Time of Travel 
detector. 

Parameter Value 

Distance between 
receptors (αr) 

7° 

Mask Size 77 Pixels 

Number of receptors 6 Receptors 

In (Figure 7) and (Figure 8) the results of 
sampling rate of 10 and 20 ms are shown. As with the 
Hassenstein-Richardt algorithm the linearity of the 
response of the algorithm to the actual velocity 
suffers at higher velocities, dramatically so at 
velocities over ~3 rad/s and sampling rates of 20 m/s. 

 

Figure 5: Performance of the Hassenstein-Richardt 
algorithm simulation at sampling rates of 50 Hz. 

C Conclusion 

Clearly the linearity is unsatisfying for low sampling 
rates at higher velocities which convinced us that 
investigation of a new algorithm better suited to the 
use case of a low-cost camera would be justified. 

3 DISTANCE OF TRAVEL 
ALGORITHM AND 
SIMULATION RESULTS 

A Distance of Travel Algorithm 

We therefore propose a new algorithm which we call 
Distance of Travel (DoT) which bears close 
relationship to the time of travel algorithm. We 
actually break the concept of the EMD by extending 
the detection of tokens across the entire line of 
photoreceptors, and in principle across the entire line-
width of the camera and treat the camera pixels as a 
coherent array. 

 

Figure 6: Performance of the Hassenstein-Richardt 
algorithm simulation at sampling rates of 200 Hz. 

 

Figure 7: Performance of the Time of Travel Algorithm at 
sampling rates of 100 Hz. 

The sampling time can be reduced by decreasing 
the distance between receptors but simultaneously 
retaining the precision of measurement as the 
algorithm measures the number of receptors the token 
traverses during a set sample time. The 
algorithm’s principle of operation is shown in Figure 
9 below.  
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Figure 8: Performance of the Time of Travel algorithm at 
sampling rates of 50 Hz. 

 

Figure 9: Principle of operation: Distance of Travel 
Algorithm. 

From right to left, at t1 a token is detected at the 
second receptor, at t2 the seventh receptor detects the 
same token. From the travelled distance the angular 
velocity can be calculated using (1.) 

 ω = Δα/Δt = (ηR2 - ηR1) • αR / (t2 – t1) (1)

The measured value may be refined by repeated 
detections of the (same) token across the 
pixels/receptors. Once the token reaches near the end 
of the pixel/receptor array the algorithm stops seeking 
another detection and returns to the beginning of the 
pixel/receptor array to search for a new token. If there 
is a new token the algorithm will be able to produce a 
stream of measurement values (Figure 10.)  

The receptor’s macro-construction is similar to 
classical elementary motion detectors and function as 
shown in Figure 11: A high pass filter (HP) eliminates 
offset components and heightens contrast. The next 

block applies an intensity hysteresis. The 
determination of this hysteresis level was not without 
difficulty. If the value is too high a value then low 
contrast tokens won’t be detected. If the level is too 
low the SNR degrades. For this reason we propose a 
method adaptive to the signal strength of the 
receptors. If a new token has been detected then, 
using the first 2/3 of the receptors (r), a minimum and 
maximum value is found and from this a high and low 
threshold value (Tmin, Tmax) calculated according to 
(2) and (3.) 

 

Figure 10: Principle of operation: Distance of Travel 
Algorithm - case of token leaving field of vision. 

 

Figure 11: Architecture of threshold detection. 

Tmin = min(rsi-j) + min(rsi-j) / 5 (2)

Tmax = max(rsi-j) + max(rsi-j) / 5 (3)

B Simulation Results 

The Distance of Travel implementation was exposed 
to the same simulation benchmarks as the other 
algorithms. In this case the receptors were built from 
an empirically determined 5x5 pixel mask with one 
overlapping column of pixels with the neighbouring 
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receptor (Figure 12.) Table 3 shows the parameters 
which were used for the simulations. 

 

Figure 12 Assembling receptors from camera pixels for the 
Distance of Travel Algorithm. 

Table 3: Fly-Eye Parameters for the Distance of Travel 
detector. 

Parameter Value 

Distance between receptors (αr) 0.36 ° 

Receptor size 5 * 5 

Receptor Overlap 1 * 5 

Number of Receptors 100 

The first test was to trigger the algorithm with a 
simulation pattern at a constant angular velocity of 
0.63 rad/s. and the results proved encouraging. Unlike 
the Hassenstein-Reichardt or ToT detectors the 
measured velocity exhibited no oscillations. The 
velocity was then varied to produce a set of 
measurements, analogous to Figure 5– Figure 8, the 
results of which are replicated in Figure 13. The 
linearity is far better across the entire test range, at 
sampling times of 20 ms, than both the Hassenstein-
Richardt and time of travel algorithms. 

 

Figure 13: Performance of the Distance of Travel 
Algorithm simulation at sampling rates of 50 Hz. 

The algorithm was further examined, also using 
different test patterns, specifically wood, brick and 
concrete (Figure 4.) Good results were achieved with 
the first two only on the concrete pattern did the 
linearity of the detector degrade at angular velocity 
above 3.5 rad/s (Figure 14).   

4 DISTANCE OF TRAVEL 
ALGORITHM 
IMPLEMENTATION AND 
TESTS 

A Implementation  

We considered the principle of the algorithm to be 
confirmed by these simulations and implemented the 
algorithm on the low-cost, COTS, leanXcam from 
SCS. This camera, is based on a 1/3” CMOS colour 
sensor and features a 500MHz Blackfin under 
uClinux, Unfortunately camera production has now 
been discontinued but the data sheet is still available 
(SCS 2016.)  

 

Figure 14: Performance of the Distance of Travel algorithm 
simulation at sampling rates of 50 Hz. and using the 
concrete pattern. 

The implementation top-level code runs in an 
endless loop with both the run time of the software 
and the image capturing/transfer time determining the 
(real-time) timing characteristics. This allowed us to 
measure the run-time of the tasks and algorithms and 
determine whether further optimisations were 
necessary to ensure the system was capable of 
processing an adequate frame rate. The code flow is 
shown in Figure 15. 

The camera chip is polled, using code supplied as 
libraries with the camera, in order to detect whether a 
new image is available and proceeds to further 
processing if this is the case. Set-up of parameters is 
achieved via an implemented web-interface, exposure 
time and max/min speeds for the search window are, 
amongst others, parameters that can be set. The 
velocity value output is via a simple printf on the 
camera’s Ethernet console output.  

The image processing (block “Processing Image” 
in Figure 15) is depicted in Figure 16. 

The implementation, in contrast to the Matlab 
simulations, performs an intensity check exiting with 
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an appropriate return value if the intensity is not 
sufficient to detect a token. If there is sufficient 
intensity then the code searches for a second instance 
of the token under the assumption that a first instance 
is already available. If this is found then the angular 
velocity can be calculated. Should a first instance not 
be available, then it branches and searches for a first 
token – which will be the case when f.i. the system 
comes out of reset.   

B Measurements  

In order to get a direct correlation between the 
simulation and the implementation it was desirable to 
use exactly the same patterns in both environments. It 
might have been possible to run the test images on a 
computer screen but the PC screen generates light as 
opposed to reflecting it and it is difficult to ensure that 
a standard PC adheres to the real-time constraints 
necessary to ensure a constant streaming of images at 
the required rate/velocity. For this reason a test-jig 
based around a conveyer belt was built (Figure 17.) 
The images previously generated were printed and 
stuck onto the conveyer belt (black and white image 
on the conveyer belt in Figure 17) and the speed of 
the conveyer belt could be adjusted. 

 

Figure 15: Flow Chart for the General Operation of the Fly-
Eye Camera. 

 

Figure 16: Flow Chart for the operation of the Distance of 
Travel Algorithm Implementation on the LeanXCam. 

 

Figure 17: Picture of test-jig. 

The schematic in Figure 18 shows the jig 
parameters used in the tests and in most of the tests 
the parameters noted in Table 4 were used. 
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Figure 18: Schematic of test jig. 

Table 4: Parameter Settings of Test-Jig. 

Parameter Value 

Distance camera to the belt 
(d) 

0.2 m 

Angle of Camera to belt (η) 90° 

Velocity of belt (vt) 0.2 – 0.8 m/s 

Illumination room 

Illumination time 0.05 s 

Test pattern black/white stripe 

The first results received a mixed reception. 
Encouraging was the closeness of velocity 
measurement to that of the belt but substantial 
oscillations were also visible in the output of the DoT 
sensor. Further investigation resulted in an attempt to 
provide the motor with better gears as it appeared that 
the motor wasn’t rotating at constant speed. That 
brought no resolution but it was noticed that the motor 
was periodically sticking. A test run where the motor 
current and voltage were also measured, albeit not 
synchronised with the conveyer-belt or DoT/camera 
sensor, was made. The motor voltage and current 
subsequently graphed against the velocity measured 
by the DoT implementation is shown in Figure 19. 
The estimated angular velocity tracks the “stickiness” 
of the motor/belt, as measured by motor 
voltage/current, very well and we consider this to be 
a sign of the quality of the DoT algorithm and its 
implementation. 

Evidenced by further test runs with the belt 
moving at different velocities and the camera 
mounted at distance of 0.3 meters from the belt, the 
DoT algorithm shows an excellent correlation 
between expected and measured velocity albeit, there 
is a deviation observable at speeds greater 0.75 m/s 
which requires further investigation. Unfortunately a 
different test-jig is required as the maximum velocity 
of the conveyer belt is 0.85 m/s.  

 

Figure 19: Correlation of Distance of Travel algorithm with 
motor current. 

 

Figure 20: Performance of the Distance of Travel algorithm 
implementation at sampling rates of 50 Hz. and using the 
stripes pattern. 

1) Wall Pattern 

The DoT algorithm depends on contrast changes in its 
line of sight to determine velocity. As in the 
simulations several other patterns were taped onto the 
conveyer belt and the velocity measured, the results 
being shown in Table 5. 

Table 5: Measurement error of Distance of Travel 
implementation using various test patterns. 

Test Pattern Average 
measured 
angular 
velocity (rad/s)

Average 
estimated 
angular 
velocity (rad/s) 

Error % 

Stripes 0.67 0.66 1.5 
Brick 0.67 0.73 9.0 
Concrete 0.67 0.72 7.5 
Wood 0.67 0.74 10.5 

2) Camera Orientation 

The use case is a mobile robot moving in a straight 
line down a corridor under closed loop control with 
the output of this algorithm/sensor as an input value. 
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The robot is bound to turn appreciably towards and 
from the wall so the angle of the camera to the wall 
will change and thus the measured angular velocity. 
The effect of camera rotation on the measured 
velocity can be seen in Figure 21.  

3) Real-Time Constraints 

We assume that images will be streamed at a constant 
rate from the CPTS camera so algorithm code must 
adhere to real-time deadlines. We measured the time 
for the algorithm to determine velocity on a per 
captured frame basis over a time period of 60 seconds 
for which an average CPU time of 171 μs was 
determined (Figure 22.) The operating system 
interfering with the execution of the tasks is 
responsible for the peaks seen > 200 μs. The 
measurement was repeated for the de-Bayering 
algorithm and an average of 514 μs was determined 
for the execution time. 

5 CONCLUSION, DISCUSSION 
AND FURTHER WORK 

A Conclusion 

We have shown by simulation that current 
implementations of the fly-eye algorithm for auto-
velocity detection are unsuitable for implementation on 
low-cost commercially available cameras. This is 
largely due to the fact that the usual technical 
construction of the elementary motion detector is such 
that sampling times higher than that deliverable by 
these cameras are required for accurate measurement. 

We have proposed a new algorithm, called the 
Distance of Travel algorithm, which is suitable for 
implementation on low-cost commercial cameras 
operating at low sampling rates. We showed that the 
algorithm exhibits better linearity at high angular 
velocities than two well-established algorithms and has 
potential for real-world application. We implemented 
this algorithm and showed through tests that the 
promise shown through simulation is reflected in real-
world measurements. The real-time characteristics of 
the implementation are also attractive.  

B Discussion 

The Distance of Travel algorithm was also examined 
with the explicit aim of enabling a robot to orientate 
and navigate down a corridor and hence both regular 
(square wave) and irregular real-world patterns, brick  
 

and concrete, were used during tests. 
Whilst the results are good, as the figures for the 

square-wave patterns show, some of the simulation 
results can not be reproduced in the real-world. 

 

Figure 21: Performance of the Distance of Travel algorithm 
implementation at different camera angles. 

 

Figure 22: Processing time distribution Distance of Travel 
implementation. 

In the case of concrete up to 7.5% error can be 
observed in the velocity range tested. Further work is 
required to understand and evaluate these 
discrepancies. In the real-world it cannot be expected 
that regular patterns will be painted on walls to help 
mobile robots with their orientation so the algorithms 
used need to be robust to variations in wall patterns. 
We don’t expect a bio-inspired robot, or one using 
bio-inspired sensors, to drive a perfectly parallel to a 
corridor wall so we must get some feeling for how 
much the robot will oscillate around the line of 
direction and, of course, whether this is acceptable in 
a real-world environment.  

In the case of the concrete pattern, a stochastic 
pattern that we can find in our own institutional 
buildings, we observe an error of ~7.5%, we don’t 
know whether this is acceptable in a   real world case. 
Neither do we know what the minimum pattern is 
necessary for a wall to have so that an acceptable 
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robot trajectory emerges. These are all issues for 
further research.  

C Further Work 

The first focus for further research is mounting the 
camera(s) on a mobile robot and allowing it to drive 
semi-autonomously down a corridor at speeds of up 
to 1 m/s. The final aim is for the robot to liaise with 
“pheromone” carrying RFID tags placed at discrete 
and longer intervals in the corridor as described by 
Doran (2011.) This body of work will include 
investigating an extension of the algorithm for the 2D 
case and whether and how the robot should be 
allowed to move in reverse. General robustness is also 
an issue. 

The suitability for offloading the algorithm into an 
FPGA is also to be examined as we believe that the 
combination camera, CPU and FPGA – as opposed to 
the use of GPUs - to be the most cost efficient for 
mobile robotics. This idea is supported by the 
increasing number of SoC FPGA devices with multi-
(hard) cores being offered on the market. A second 
reason is that Lichtensteiger (2004) showed that an 
optimal fly-eye facet pattern (i.e physical 
arrangement and size of photoreceptors) could be 
derived for specific tasks. By using a learning 
algorithm Lichtensteiger generated one pattern for 
navigation along a wall and a second one for 
optimised obstacle detection, both in the direction of 
travel. By streaming images through an FPGA it is 
possible to apply the facet principle multiple times, 
like a filter, on different physical locations of the 
image. It should therefore be possible to generate 
hybrid fly-eyes that achieve different aims at very low 
computation expense. Work is needed to show the 
viability of this approach. 
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