Gmach, D., Rolia, J., Cherkasova, L., and Kemper, A.
(2007). Workload analysis and demand prediction of
enterprise data center applications. In 2007 IEEE 10th
International Symposium on Workload Characteriza-
tion, pages 171–180. IEEE.
Grabner, H. and Bischof, H. (2006). On-line boosting
and vision. In Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference on,
volume 1, pages 260–267. IEEE.
Grabner, H., Grabner, M., and Bischof, H. (2006). Real-
time tracking via on-line boosting. In Bmvc, volume 1,
page 6.
Gutierrez, R. S., Solis, A. O., and Mukhopadhyay, S.
(2008). Lumpy demand forecasting using neural net-
works. International Journal of Production Eco-
nomics, 111(2):409–420.
Islek, I. (2016). Using ensembles of classifiers for demand
forecasting.
Johnson, K., Lee, B. H. A., and Simchi-Levi, D. (2014).
Analytics for an online retailer: Demand forecasting
and price optimization. Technical report, Technical
report). Cambridge, MA: MIT.
Lim, C. and McAleer, M. (2002). Time series forecasts
of international travel demand for australia. Tourism
management, 23(4):389–396.
Liu, N., Ren, S., Choi, T.-M., Hui, C.-L., and Ng, S.-F.
(2013). Sales forecasting for fashion retailing service
industry: a review. Mathematical Problems in Engi-
neering, 2013.
Miller, G. Y., Rosenblatt, J. M., and Hushak, L. J.
(1988). The effects of supply shifts on producers’ sur-
plus. American Journal of Agricultural Economics,
70(4):886–891.
Natekin, A. and Knoll, A. (2013). Gradient boosting ma-
chines, a tutorial. Frontiers in neurorobotics, 7:21.
Oza, N. C. and Russell, S. (2001). Experimental com-
parisons of online and batch versions of bagging
and boosting. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 359–364. ACM.
Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81–106.
Srinivasan, D. (2008). Energy demand prediction using
gmdh networks. Neurocomputing, 72(1):625–629.
Sun, Z.-L., Choi, T.-M., Au, K.-F., and Yu, Y. (2008). Sales
forecasting using extreme learning machine with ap-
plications in fashion retailing. Decision Support Sys-
tems, 46(1):411–419.
Thomassey, S., Happiette, M., Dewaele, N., and Castelain,
J. (2002). A short and mean term forecasting system
adapted to textile items’ sales. Journal of the Textile
Institute, 93(3):95–104.
Tutz, G. and Binder, H. (2006). Generalized additive mod-
eling with implicit variable selection by likelihood-
based boosting. Biometrics, 62(4):961–971.
Vroman, P., Happiette, M., and Rabenasolo, B. (1998).
Fuzzy adaptation of the holt–winter model for tex-
tile sales-forecasting. Journal of the Textile Institute,
89(1):78–89.
Yoo, H. and Pimmel, R. L. (1999). Short term load forecast-
ing using a self-supervised adaptive neural network.
IEEE transactions on Power Systems, 14(2):779–784.
Zhang, G., Patuwo, B. E., and Hu, M. Y. (1998). Forecast-
ing with artificial neural networks:: The state of the
art. International journal of forecasting, 14(1):35–62.
Zhang, G. P. (2003). Time series forecasting using a hybrid
arima and neural network model. Neurocomputing,
50:159–175.
DATA 2017 - 6th International Conference on Data Science, Technology and Applications
222