REFERENCES
˚
Astr¨om, K. J. and H¨agglund, T. (1995). PID controllers:
Theory, Design, and Tuning. NC, second edition edi-
tion.
Bichiou, S., Bouafoura, M. K., and Braiek, N. B. (2016).
state feedback suboptimal time control method using
block pulse functions. In 24th Mediterranean Confer-
ence on Control and Automation (MED), pages 1224–
1229, Athens, Greece.
Bouafoura, M. K., Lanusse, P., and Braiek, N. B. (2009).
State space modeling of fractional systems using
block pulse fonction. In 15th IFAC Symposium on sys-
tem Identification SYSID’2009, St Malo, France.
Brewer, J. (1978). Kronecker products and matrix calculus
in system theory. IEEE Transactions on Circuits and
Systems, 25(9):772–781.
Chou, J. and Horng, I. (1986). State estimation using con-
tinuous orthogonal functions. International Journal of
Systems Science, 19(9):1261–1267.
Consolini, L. and Piazzi, A. (2006). Generalized bang-
bang control for feedforward constrained regulation.
In 45th IEEE Conference on Decision and Control,
pages 893–898, San Diego, CA.
Ermidoro, M., Formentin, S., Cologni, A., Previdi, F., and
Savaresi, S. M. (2014). On time-optimal anti-sway
controller design for bridge cranes. In American Con-
trol Conference, pages 2809–2814, Portland, OR.
Kefferp¨utz, K. and Adamy, J. (2011). A tracking controller
for linear systems subject to input amplitude and rate
constraints. In American Control Conference, pages
3790–3795, San Francisco, CA.
Kirk, D. (1970). Optimal Control Theory: An Introduction.
Dover Books on Electrical Engineering.
Lasserre, J. B., Prieur, C., and Henrion, D. (2005). Non-
linear optimal control: Numerical approximations via
moments and lmi relaxations. In 44th IEEE Confer-
ence on Decision and Control, pages 1648–1653.
Mohan, B. M. and Kar, S. K. (2010). Orthogonal functions
approach to optimal control of delay systems with re-
verse time terms. Journal of the Franklin Institute,
347(9):1723–1739.
Pacheco, R. P. and Steffen, V. (2002). Using orthogonal
functions for identification and sensitivity analysis of
mechanical systems. Journal of Vibration and Con-
trol, 8(7):993–1021.
Piccagli, S. and Visioli, A. (2007). Using a chebyshev tech-
nique for solving the generalized bang-bang control
problem. In 46th IEEE Conference on Decision and
Control, pages 4743 –4748, New orleans, LA.
Piccagli, S. and Visioli, A. (2009). Minimum-time feedfor-
ward technique for pid control. IET Control Theory
and Applications, 3(10):1341–1350.
Pontryagin, L. S., Boltyanskii, V., Gamkrelidze, R., and
Mischenko, E. (1962). The mathematical theory of
optimal processes. Interscience Publishers Inc, New
York.
Pradhan, J. K. and Ghosh, A. (2015). Multi-input and multi-
output proportional-integral-derivative controller de-
sign via linear quadratic regulator-linear matrix in-
equality approach. IET Control Theory and Applica-
tions, 9(14):2140–2145.
Qi, Z. Z., Jiang, Y. L., and Xiao, Z. H. (2014). Model order
reduction based on general orthogonal polynomials in
the time domain for coupled systems. Journal of the
Franklin Institute, 351(6):3200–3214.
Rao, G. P. and Sivakumar, L. (1981). Transfer function
matrix identification in mimo systems via walsh func-
tions. In IEEE proc., volume 69, pages 465–466.
shen, Z., Huang, P., and Andersson, S. B. (2013). Calcu-
lating switching times for the time-optimal control of
singleinput, single-output second-order systems. Au-
tomatica, 49(3):1340–1347.
Warrad, B. I., Bouafoura, M. K., and Braiek, N. B. (2015).
Tracking control synthesis of nonlinear polynomial
systems. In 12th International Conference on Infor-
matics in Control, Automation and Robotics, pages
517–523, colmar, Alsace, France.
Wu, J. L., Chen, C. H., and Chen, C. F. (2000). A uni-
fied derivation of operational matrices for integra-
tion in systems analysis. In International Conference
on Information Technology: Coding and Computing
(ITCC’00), pages 436–442, Washington, DC, USA.
Zheng, F., Wang, Q.-G., and Lee, T. (2002). On the de-
sign of multivariable pid controllers via lmi approach.
Automatica, 38(3):517–526.